‘xpress Mail No. EL408130855US

CS5-102456

United States Patent Application
of

Rader, Sheila
Lucas, Brian
Garani, Pradeep
and
Steininger, Franz

=
PN
=

INTEGRATED PROCESSOR PLATFORM SUPPORTING
WIRELESS HANDHELD MULTI-MEDIA DEVICES

10

15

20

25

30

35

O QO

INTEGRATED PROCESSOR PLATFORM SUPPORTING
WIRELESS HANDHELD MULTI-MEDIA DEVICES

C5-10246

BACKGROUND OF THE INVENTION

' The present invention relates to wireless
handheld multi-media devices, such as digital telephones,
and more specifically to processor platforms in wireless
handheld multi-media devices. Even more specifically,
the present invention relates to such processor platforms
having minimal size and power consumption and that enable
efficient data transfers between multiple processors of
the processor platform and multiple peripherals.

New standards for digital cellular systems
incorporate high speed packet data network capability in
addition to traditional circuit switched wvoice and data
channels. At the same time, among the general public,
there is wide spread use of the Internet which offers a
host of personal communication, information, electronic
commerce and entertainment services. The next generation
cellular systems offers the opportunity to market
wireless products which have voice, data, and personal
information management capabilities, i.e. multi-media
devices. These products are destined to become portable
information appliances with the potential for significant
market share.

In such multi-media devices, in particular
digital cellular telephones, processor platforms include
two main processor cores: a digital signal processor
(DSP} core coupled to the radio interface and a host
processor core for running the device and coordinating
data movements from several peripherals. Such a device
may include as peripherals, a Universal Serial Bus (USB),
a Universal Asynchronous Receiver/Transmitter (UART) with
an optional mode to support the IrDA standard, a
Synchronous Serial Interface (SSI), a Multi-Media Card
(MMC) , and a Bluetooth interface supporting the Bluetooth

standard.

10

15

20

25

30

35

O O

It is desirable to be able to move data to and
from the various peripherals and the memory of the host
processor, and also to and from the various peripherals
and the memory of the DSP, and furthermore, to and from
the memory of the DSP and the memory of the host
processor. Using a technique known in the art as Direct
Memory Access (DMA), such transfers advantageously take
place without involving either the host processor or the
DSP. Thus, for example, instead of the host processor
initiating a data transfer from a particular peripheral
to the host processor memory, a DMA controller performs
the data transfer, allowing the host processor to focus
on more important functions. Advantageously, the DMA
technique relieves the host processor and the DSP from
the cumbersome tasks of simple data transfers, enabling
faster and more efficient use of the processors within
the device.

However, a DMA controller forms a hardwired
unidirectional data channel between two nodes. The DMA
controller is coupled between a particular peripheral and
the system bus which accesses both the processor to be
relieved of the task of performing the data transfer and
it's memory. The DMA controller provides the hardware
to implement the direct memory access. Because each data
channel is unidirectional, two separate DMA data channels
are required for bidirectional data transfers between the
two nodes. Furthermore, since each data channel is
implemented in hardware, once established, the data
channel may not be reconfigured to allow a data transfer
to and from different nodes or in a different direction.

Thus, separate unidirectional data channels
must be hardwired to allow direct memory access for
multiple processors and multiple peripherals.
Disadvantageously, in handheld multi-media devices, there
may be a large number of peripherals; thus, requiring
many DMA controllers to hardwire all of the possible DMA

connections. For example, to adequately relieve the host

K

10

15

20

25

30

35

O O

processor and the DSP from having to perform data
transfers between the peripherals and the respective
memories, DMA controllers must be implemented in hardware
between each peripheral and the host processor memory and
the DSP memory, such that each DMA controller establishes
the desired unidirectional data channels.

Disadvantageously, in small handheld
applications, implementing a large number of DMA
controllers expends valuable real estate on the processor
platform. In other words, the more hardware DMA
controllers needed, the more transistors are required on
the processor platform and the more space is consumed on
the platform by the DMA hardware. What is needed is a
processor platform that implements DMA functionality to
allow efficient operation of multiple processors without
using traditional DMA hardware for all of the various
data transfer paths.

Another concern in processor platforms for
small handheld multi-media processors is minimizing power
consumption. Employing a processor platform without
concern for saving power unnecessarily reduces the
battery life, which is important in handheld applications
because this decreases the time in between battery
charges that are required. Furthermore, in multi-media
applications which require a large random access memory
(RAM) , it is desirable to employ dynamic RAM (DRAM) as
opposed to static RAM (SRAM), since DRAM is much less
costly than SRAM in terms of die size versus array
density.

Additionally, embedded DRAM (eDRAM), which is
DRAM embedded on the processor platform, may be used to
reduce the overall space required by the processor
platform. However, in comparison to SRAM, both DRAM and
eDRAM must be periodically refreshed in order to ensure
that the data contained therein is saved. The refreshing
process, typically performed by a refresh controller,
consumes valuable power to make sure that data remains

10

15

20

25

30

35

O O

stored. What is needed is a method to refresh the DRAM
in such a way as to conserve as much power as possible.

Furthermore, in such handheld multi-media
devices, such as telephones, liquid crystal displays
(LCDs), such as those found in personal digital
assistants (PDAs), are implemented to allow the user to
readily view web pages, for example. A typical LCD
requires data to be moved from the video buffer to the
display driver circuit. This presents problems in that
the large LCD bus must transmit and receive data from 8,
16, or 32 bit busses from a memory (e.g. eDRAM) that is
only 8, 16 or 32 bits wide. Disadvantageously, the LCD
controller and image processor of the LCD spend much time
using the system memory, as a video buffer, relative to
other peripherals and devices that are required to access
the system memory for DMA techniques, which makes the
system memory less accessible to these other peripherals
and devices. Thus, when video images are displayed on
the LCD, the system memory (e.g. eDRAM) acts primarily as
the video buffer and also as the system RAM. A separate
RAM (e.g. another eDRAM) may be implemented to act as the
video buffer; however, such additional memory
disadvantageously adds to the transistor count and thus
size of the processor platform. What is needed is an
efficient memory that can adequately support an LCD
controller and at the same time be used as a system RAM
and for DMA data transfers.

The present invention advantageously addresses

the above and other needs.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and other aspects, features and
advantages of the present invention will be more apparent
from the following more particular description thereof,
presented in conjunction with the following drawings and

Appendices A and B wherein:

10

15

20

25

30

35

O O

FIG. 1 is a high level block diagram of a
wireless multimedia processor platform having three
processor coresgs: a digital signal processor (DSP), a host
processor, and a RISC processor core within an
interprocessor communication module (IPCM), wherein the
interprocessor communication module performs programmable
direct memory access functionality;

FIG. 2 is a detailed block diagram of the
wireless multimedia processor platform of FIG. 1;

FIG. 3 is a block diagram of the interprocessor
communication module (IPCM) of the wireless multimedia
processor platform of FIGS. 1 and 2;

FIG. 4 is a diagram that illustrates the
programmably selectable direct memory access (DMA) data
channels provided by the interprocessor communication
module (IPCM) of FIGS. 1, 2 and 3;

FIG. 5 is an illustration which demonstrates
the functionality of the event scheduler of FIG. 2 in
accordance with an embodiment of the present invention.

FIG. 6 is a diagram of the pointers and memory
buffers within the interprocessor communication module
and the host processor memory and which are used for each
of the programmable direct memory access data channels;

FIG. 7 is a flowchart of the steps performed in
implementing a selective refresh technique performed by a
refresh controller of FIG. 2 in accordance with one
embodiment of the present invention;

FIG. 8 is a flowchart of the steps performed by
the refresh controller of FIG. 2 in performing the
temperature compensated method of memory refresh in
accordance with another embodiment of the present
invention; and

FIG. 9 is a block diagram of a memory refresh
system using the selective refresh technique and the
temperature compensated refresh techniques of FIGS. 7 and
8.

10

15

20

25

30

35

O O

Corresponding reference characters indicate
corresponding components throughout the several views of
the drawings.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The following description of the presently
contemplated best mode of practicing the invention is not
to be taken in a limiting sense, but is made merely for
the purpose of describing the general principles of the
invention. The scope of the invention should be
determined with reference to the claims.

The present invention advantageously addresses
the needs above as well as other needs by providing a
wireless multimedia processor platform including multiple
processor cores, multiple peripherals, and an
interprocessor communication module that performs
programmable direct memory access functionality for
programmably selectable data transfers between the
memories of the multiple processor cores and the various
peripherals attached thereto. Furthermore, the processor
platform includes features that minimize the size and
power consumption of the processor platform as well as
allow video buffering from the host processor memory to
support an LCD display without limiting the ability of
other devices to access the host processor memory.

Multi-Media Processor Platform Overview

Referring first to FIG. 1, a high level block
diagram is shown of a wireless multimedia processor
platform haviﬁ§ three processor cores: a digital signal
processor (DSP), a host processor, and a RISC processor
core within an interprocessor communication module
(IPCM), wherein the interprocegsor communication module
performs programmable direct memory access data
transfers. Shown is a multimedia processor platform 100
including a digital signal processor 102 (also referred

to as DSP 102), a random access memory 104 (also referred

10

15

20

25

30

35

O O

to as RAM, DSP memory or DSP RAM), a host processor 106
(also referred to as host 106 or MCore), an embedded
dynamic random access memory 108 (also referred to as
eDRAM 108 or host processor memory), a Universal Serial
Bus 110 (also referred to as USB 110), a Universal
Asynchronous Receiver/Transmitter 112 with an optional
mode to support the IrDA standard (also referred to as
UART/IrDA 112), a Multi-Media Card 114 (also referred to
as MMC 114), and an interprocessor communication module
116 (also referred to as IPCM 116).

The multimedia processor platform 100, which
may also be referred to as a processor platform 100 or
simply processor 100, is in the form of a single
integrated circuit or chip having three processor cores:
the DSP 102, the host processor 106, and a RISC processor
core within the IPCM 116. The processgor 100 represents a
"system on a chip" design (also referred to as "SOC").

In the application of a wireless handheld multimedia
devices, it is advantageous that the components of the
processor 100 all appear on a single chip. This is
because of the sgize constraints in the handheld
applications and also due to the fact that separate
processors on separate chips must be hardwired together
which may result in losses from wiring chip to chip.
However, it is important to note that the present
invention is not limited to a system on a chip design,
and thus, the three processor cores, i.e. the DSP 102,
the host processor 106, and RISC processor core of the
IPCM 116, may be implemented on separate chips if so
desired in another application.

In operation, the IPCM 116 couples all three of
the DSP portion (i.e the DSP 102 and RAM 104), the host
portion (i.e. the host processor 106 and the eDRAM 108)
and the peripherals (i.e. the USB 110, the UART/IrDA 112,
and the MMC 114) together. Advantageously, the IPCM 116
provides programmable direct memory access (DMA) data

channels to allow direct memory access data transfers (1)

O O

from a particular peripheral to either the DSP RAM 104 or
the eDRAM 108, (2) from the DSP RAM 104 or the eDRAM 108
to a particular peripheral, and (3) between the DSP RAM
104 and the eDRAM 108. These DMA data transfers may be

5 time coordinated (occurring at predetermined times) or
event coordinated (occurring upon request or
instruction). The IPCM 116 has a reduced instruction set
computer (RISC) processor core that enables direct memory
access (DMA) data transfers over programmably selectable

10 DMA data channels. For example, the IPCM 116 replaces a
large number of hardware DMA controllers to create, for
example, 32 programmable data channels, wherein each data
channel may be programmed to transfer data in any one of
the three directions above. An equivalent hardware DMA

15 implementation generally would require 2*n* (c+1)
individual DMA data hardware controllers, where the
number 2 represents data channels in two directions, n
represents the number of data channels and c¢ represents
the number of processors capable of using the IPCM 116,

20 such that c+1 is the number of data paths. In the
embodiment shown, n=32, c=2 (i.e. the DSP 102 and the

= host processor 106) such that c+1=3 (i.e. the number of

data paths, e.g. peripheral to memory, memory to
peripheral and memory to memory), which results in the

25 TIPCM 116 replacing of 192 individual hardware DMA
controllers. Disadvantageously, this large number of DMA
controllers would not be cost effective and would
dominate the available space of the processor. Thus, the
IPCM 116 provides a number of DMA data channels or data

30 paths that are each configurable or programmable to
connect different nodes together. As such, a node is
typically the RAM 104, eDRAM 108, or one of the
peripherals. Thus, a single DMA data channel may be
programmed to provide a direct memory access data

35 transfer from the USB 110 to the eDRAM 108, and then the
same data channel may be reprogrammed or reconfigured at

B
I

i

]

10

15

20

25

30

35

O O

a later time to provide a direct memory access data
transfer to from the DSP RAM 104 to the MMC 114.

This is a departure from hardware DMA
coﬁtrollers which provide a non-programmable,
unidirectional wired data channel from one node to
another node, which may not be later reconfigured as
between two different nodes. Advantageously, in a
wireless multi-media application, where the physical size
of the chip or processor 100 is important and there are a
large number of peripheral devices requiring many DMA
controllers for direct memory access, the IPCM 116
provides a programmable DMA functionality in which a data
channel is formed that may be altered as needed. Thus,
many DMA controllers are not needed and the overall size
of the processor 100 may be made smaller than if many
hardware DMA controllers were implemented.

The function of the IPCM 116 advantageously
relieves both the host processor 106 and the DSP 104 from
having to stop performing tasks in order to perform data
transfers. The IPCM 116 performs these transfers in
order to provide the most efficient operation of both the
DSP 102 and the host processor 106. In other words, the
DSP 102 and the host processor 106 are allowed to operate
at their optimal speeds and perform the critical tasks
that they were designed for without slowing down to
perform simple data transfers.

Referring next to FIG. 2, a detailed block
diagram is shown of one embodiment of the wireless
multimedia processor platform of FIG. 1. Shown is the
multi-media processor platform 100 including the digital
signal processor 102 (DSP 102), a DSP RAM 104, DSP
peripheral interface 202, the host processor 106 (also
referred to as the call processor 106), the embedded DRAM
108 (eDRAM 108), an LCD controller 204 (also referred to
more generically as a display controller) including image
processing 206 and configuration registers 208, and host
peripheral interface 210. The processor platform 100

10

15

20

25

30

35

O O

also includes the following peripherals 230: the USB 110,
the UART/IrDA 112, a Synchronous Serial Interface 212
(also referred to as an SSI 212), the MMC 114, and a
bluetooth interface 214. Also included is the IPCM 116,
an event timer 216, data path select 218 (also referred
to as the data path select unit 218), an eDRAM refresh
controller 220 (also referred to as refresh controller
220), and a bus interface 222.

Further included are the following busses: a
clock bus 224 (also referred to as the "c" bus 224)
coupled to the refresh controller 220; the DSP system bus
226 (also referred to as the "d" bus 226) coupling the
DSP 102, the DSP RAM 104 and the DSP peripherals 202 to
the IPCM 116; the event bus 228 (also referred as the "e"
bus 228) coupling the peripherals 230 to the event timer
216 and the IPCM 116; the host system bus 232 (also
referred to as the "h" bus 232) coupling the host
processor to the peripherals 230 and 210, the LCD
controller 204, bus interface 222, data path select 218,
refresh controller 220, and the IPCM 116; the IPCM bus
234 (also referred to as the "i" bus 234) coupling the
IPCM 116 to peripherals 230; the memory bus 236 (also
referred to as the "m" bus 236) coupling the data path
select 218 to the eDRAM 108; LCD bus 238 {(also referred
to as the "p" bus 238) coupling the image processing 206
to the data path select 218; the refresh bus 240 (also
referred to as the "r" bus 240) coupling the refresh
controller 220 to the data path select 218; an external
system bus 242 (also referred to as the "s" bus 242)
coupling the bus interface to, for example, external
memory 244; and a transfer bus 246 (also referred to as
the "t" bus 246) coupling the IPCM 116 to the data path
select 218.

Also illustrated in FIG. 2, but not part of the
processor platform 100, are the radio hardware 248
coupled to the DSP peripheral interface 202, the LCD
panel 250 coupled to the image processing 206, the

10

10

15

20

25

30

35

O O

external memory 244 coupled to the bus interface 222, and
a clock input 252 coupled to the refresh controller 220.

The processor platform 100 includes three
procesgor cores: the DSP 102, the host processor 106, and
a RISC processor core embedded within the IPCM 116.
Advantageously, in this embodiment, the processor
platform 100 is implemented as a system on a chip,
although many features of the present invention are not
limited to an integrated system on a chip design. The
following is a brief description of several of the
components of the processor platform 100.

The DSP 102, as known in the art, is interfaced
via a DSP system bus 226 to a system memory, e.g. DSP RAM
104, and DSP peripheral interface 202. The DSP RAM 104
contains DSP program and data storage areas. The DSP
peripheral interface 202 is used to interface the DSP
core (i.e. modem) to the radio hardware 248 to implement
cellular radio communications. These components are well
known in the art and are commonly found in cellular
telephones.

The host processor 106 is a general purpose
reduced instruction set computer (RISC) processor or a
complex instruction set computer (CISC) processor as
known in the art. The LCD controller 204 is a module
containing digital logic configured to render an image
onto an external LCD panel 250 from a binary bit image
contained within memory, e.g. an eDRAM 108 memory array.
The host peripheral interface 210 includes one or more
modules containing digital logic and configured as a
peripheral operated by the host processor 106. Examples
of such peripheral interfaces include keyboard interface,
general purpose timer, and general purpose I/O ports.

Also included are multimedia peripherals 230.
The USB 110 is a logic block configured as a peripheral
implementing the media access layer functions of the open
standard known as the Universal Serial Bus. The module

is configured with 2 interface ports: a port interfaced

11

10

15

20

25

30

35

O O

to the host processor 106 via the h bus 232 for purposes
of configuration management and control and a data port
interfaced to the IPCM 116 via the i bus 226 used to pass
data to and from the external serial interface.

The IrDA/UART 112 is a logic block configured
as a peripheral implementing the necessary functions
known in the art as a Universal asynchronous
Receiver/Transmitter with an optional mode to support the
IrDA standard. The IrDA/UART 112 is configured with 2
interface ports: a port interfaced to the host processor
106 via the h bus 232 for purposes of configuration
management and a data port interfaced to the IPCM 116 via
the i bus 236 used to pass data to and from the external
serial interface.

The SST 212 is a logic block configured as a
peripheral implementing the necessary functions known in
the art as a Synchronous Serial Interface. The module is
configured with 2 interface ports: a port interfaced to
the host processor 106 via the h bus 232 for purposes of
configuration management and a data port interfaced to
the IPCM 116 via the i bus 236 and used to pass data to
and from the external serial interface.

The MMC 114 is a digital interface designed for
the purpose of connecting to and operating with a
MULTIMEDIACARD. The MMC 114 is configured with 2
interface ports: a port interfaced to the host processor
106 via the h bus 232 for purposes of configuration
management and a data port interfaced to the IPCM 116 via
the i bus 236 and used to pass data to and from the
external MULTIMEDIACARD.

The bluetooth interface 214 is a digital
interface containing designed for the purpose of
supporting the BLUETOOTH open standard. The bluetooth
interface 214 is configured with 2 interface ports: a
port interfaced to the host processor 106 via the h bus
232 for purposes of configuration management and a data
port interfaced to the IPCM 116 via the i bus 236 and

12

.

10

15

20

25

30

35

O O

used to pass data to and from an external Bluetcoth

compliant radio circuit.

The event timer 216 is a binary counter coupled
to the IPCM 116 via the e bus 228 and having 'n' number
of states connected to comparison logic capable of
detecting a predetermined distinct state for the purpose
of generating a signal when a specific state is
indicated. The counter is clocked by an accurate clock
source. In one embodiment, the event timer 216 can
handle up to 32 events at a given time. In some
embodiments, the event timer 216 may be used to signal a
programmed event or direct memory access data transfer to
the IPCM 116, for example, at regular intervals.

The IPCM 116 is designed to perform
interprocessor and serial I/0O communication employing DSP
102 processor, and the I/0 peripherals 230, such as USB
110, IRDA/UART 112, bluetooth interface 214 and MMC 114.
The IPCM 116 is strategically positioned in the
architecture to enable programmable direct memory access
(DMA) data transfers to/from I/O peripherals with either
the host processor 106 or the DSP 102. In addition, the
IPCM 116 supports data transfers between the DSP and Host
itself. Thus, advantageously, the IPCM 116 behaves as a
programmable DMA to transfer data into memory without
involving either the DSP 102 or the host processor 106 to
make the data transfer.

Within the IPCM 116 is a programmable RISC core
which is programmed to perform DMA functions. A more
detailed description of the inner workings of the IPCM
116 is described with reference to FIG. 3. This approach
offers several advantages over non-programmable (e.g.
hardware based) solutions. The programmable DMA
functionality of the IPCM 116 has many benefits. First,
this allows dynamic routing in that the RISC core can be
programmed to perform a variety of tasks. Under

programmed control, in one embodiment, the IPCM 116 can

13

10

15

20

25

30

35

O O

configure up to 32 simultaneous DMA data channels, each
of which may be configured in any one of three
directions. DMA data transfers are routed over
respective ones of each of these 32 DMA data channels.
For example, each data channel could be configured to as
a DMA data channel for DMA data transfers between (1) a
peripheral 230 to memory (e.g. DSP RAM 104 or eDRAM 108),
(2) memory (e.g. DSP RAM 104 or eDRAM 108) to peripheral
230, or (3) memory (e.g. DSP RAM 104 or eDRAM 108) to
memory (e.g. the other of eDRAM 108 or DSP RAM 104).
Advantageously, each of these 32 programmed DMA data
channels may later be reprogrammed to allow DMA data

transfers between two different nodes.

Furthermore, the IPCM 116 allows more
functionality in a smaller footprint. This is because
the IPCM 116 replaces many separate wired DMA controllers
between the various nodes, i.e. the DSP RAM 104, the
eDRAM 108, and the various I/O peripherals 230. This
represents a significant savings in gates or transistors
needed on the die, which for handheld multimedia
applications is important in minimizing processor size.
Typical gate counts of DMA channels are approximately 3k
gates per channel. In this embodiment, the IPCM 116
becomes a space saving advantage when more than 6
hardware DMA channels are required. Advantageously, in
this embodiment, the IPCM 116 behaves as 192 (as
described above) separate DMA channels within the
footprint of about 6 actual hardware DMA channels.

Additionally, the IPCM 116 is flexible and
scalable. The concept lends itself to enhancements for
future generation products. The flexible data routing
capabilities enable additions to the basic architecture
such as hardware based accelerators. Enhancements to the
RISC core of the IPCM 116 include adding registers and
new instructions to permit the concept to meet future

needs.

14

o

H

10

15

20

25

30

35

O O

Also, the programmable RISC processor core of
the IPCM 116 provides a common application program
interface (API) to be defined, since the programmable
RISC core uses virtual control registers which are mapped
into the host memory (i.e. eDRAM 108). The API can
remain intact when enhancements are made to the IPCM 116
in future generations. This feature increases software

reusability.

Another feature is that the IPCM 116 1is
provided with smart power management such that a sleep
mode is entered during periods of inactivity. This is
important in handheld applications where battery life is
an important concern.

Yet another feature of the IPCM is that the DMA
data transfers can be transferred to and from memory
(e.g. either DSP RAM 104 or eDRAM 108) using little-
Endian format or big-Endian format, as known in the art.
This enables the IPCM 116 to communicate with different
types of processors configured according to either
format. For example, a DSP configured for little Endian
format or a DSP configured for big-Endian format can
interface with the IPCM 116.

Another component of the processor platform 100
is that since the entire system is implemented on a chip,
the RAM of the host processor 106 is an on-chip memory
array constructed of DRAM type bit cells as known in the
art and referred to as an embedded DRAM or eDRAM 108.

The array is configured as 65536 words (64k words) of 128
bits each for a total of 67,108,846 bit cells (64M bit).
The eDRAM 108 must be refreshed periodically and this
function is accomplished by the refresh controller 220.
The 128 bit width of the eDRAM 108 is optimized for the
LCD controller 204 as will be described further below.
Thus, the eDRAM 108 functions as the host processor
memory and an on-chip video buffer for the LCD panel 250.
Advantageously, the width of the eDRAM reduces the number

15

10

15

20

25

30

35

O O

of access cycles consumed by the LCD controller 204 and
thereby increase the number of access cycles available to
the host processor 106 and IPCM 116.

The bus interface 222 is a module containing
digital logic configured to function as a memory
controller as known in the art. The module supports
external memory 244 interfaced to the processor platform
100 via the s bus 242. The external memory 244 includes
a number of discrete memory devices such as SRAM, EPROM,
FLASH and DRAM. The external memory 244 is directly
accessible by the host processor 106 or indirectly
accessible by the DSP 102 via the IPCM 116. This is
advantageous because this enables the host processor 106
and/or the DSP 102 to upload and run applications that
are too large to be stored in the respective memories of
these processors. For example, the DSP 102 may upload
and run voice recognition programs stored in the external
memory 244. Furthermore, the bus interface 222 allows
concurrent processing operations between the host
processor 106, the IPCM 116 and the DSP 102; thus,
implementing a multiple instruction stream, multiple data
stream (i.e. MIMD) on a single integrated circuit

realizing the multi-media telephone, for example.

Note that since the eDRAM 108 has its own bus,
i.e. the m bus 236, instead of being a part of the host
system bus or h bus 232, the host processor 106 may
access the external memory 244 through the bus interface
222 while at the same time, the IPCM 116 accesses the
eDRAM 108.

The data path select 218 contains arbitration
logic and a pre-programmed data multiplexer designed for
the purpose of interfacing the data path of the eDRAM 108
to one of 4 entities that may request access to the
array. The 4 entities which can request access to the
eDRAM 108 are the host processor 106 having an access
width of 32 bits, the IPCM 116 having an access width of

16

10

15

20

25

30

35

O O

32 bits, the LCD Controller 204 having an access width of
128 bits, and the refresh controller 220 for performing
16 ms periodic cycle stealing refresh for 4096 rows as
known in the art. In the embodiment shown, each
requestor has a unique data path bus width, e.g. the p
bus 238 has a width of 128 bits while the i bus 246 and
the h bus 232 have a 32 bit width. The data path select
218 automatically configures the appropriate data path
depending on the device being granted access. As such,
the data path select 218 converts the wide array of 128
bits to support popular 32 bit RISC processor cores, e.d.
within the IPCM 116. In all cases the memory address
presented by the requestor is taken into account in order
to reference the correct data elements from the array.
The bus width and access modes for each requestor is
shown in Table 1 below.

Table 1; Data path configuration

. . Access
Requestor |Bus width|Read/Write modes
Host Core x32 R/W %8 ,x16,x32
IPCM x32 R/W x8,x16,x32
LCD
Controller x128 Read only x128
Special Invokes
C;ﬁ??g?f;r 0 refresh 4096 bit
cycle cells

Furthermore, in one embodiment, the data path
select 218 always stores and retrieves data to and from
the eDRAM 108 using the big-Endian format. However,
since the IPCM is configured to operate in either little-
Endian format or big-Endian format, if the IPCM is
operating according to the little-Endian format, the data
path select 218 converts the data to and from the IPCM
according to the little-Endian and to and from the eDRAM
into big-Endian format. As such, the IPCM must inform
the data path select which format it is configured as.

The refresh controller 220 generates memory

17

10

15

20

25

30

35

O O

requests to the eDRAM 108 in order to facilitate periodic
cycle refresh of the bit cells within the eDRAM array.
However, in preferred embodiments of the present
invention, the method of refreshing the eDRAM 108 is
performed in such a manner as to minimize power
consumption in ways not contemplated by known refreshing
techniques. Several specific refreshing techniques that
are designed to conserve power consumption are described
with reference to FIGS. 7-9.

The following is a description of the wvarious
bus interfaces. The clock bus 224 ("c" bus) is a clock
input line used to sequence and time the refresh
controller 220. The DSP system bus 226 ("d" bus)
contains a separate address and data path along with
control signals to convey read and write operations to
the selected device. 1In addition, a bus request and bus
acknowledge signal is also incorporated to allow the IPCM
116 to request use of the DSP system bus. The event bus
228 ("e" bus) is a group of signals driven by the
peripherals 230 and sent to the input event detection
device of the IPCM 116 (see FIG. 3) for the purpose of
activating a data movement operation. The host system
bus 232 ("h" bus) contains a separate address and data
path along with control signals to convey read and write
operations to the selected device. The h bus 232 can
operate independently from all other buses. In addition,
a bus request and bus acknowledge signal is also
incorporated to allow the IPCM to request use of the h
bus 232. The IPCM bus 234 ("i" bus) is the IPCM system
bus containing a separate address and data path along
with control signals for signaling read and write
operations to a specified peripheral 230. The memory bus
236 ("m" bus) is a bi-directional bus and is used to
interconnect the eDRAM 108 with the data path select 218
module. The memory bus 236 has a bus width of 128 bits.
The LCD bus 238 ("p" bus) is a unidirectional bus having

a width of 128 bits and is used to move display image

18

10

15

20

25

30

35

O O

samples to the LCD controller 204 for display on the LCD
panel 250. The refresh bus 240 ("r" bus) is a bus that,
when asserted, contains the address of the next row to be
refreshed in the eDRAM 108 array. The external system
bus 242 ("s" bus) contains a separate address and data
path along with control signals to convey read and write
operations to the selected external memory 244. The
external system bus 242 is accessible by the host
processor 106 or the IPCM 116. The transfer bus 246 ("t"
bus) conveys access requests from the IPCM 116 to the
eDRAM 108 array. The transfer bus is bi-directional and
has a 32 bit data path and a 32 bit address path.

Another feature of the eDRAM 108 is that it
provides an on-chip video buffer as well as being the RAM
for the host processor 106. Advantageously, the eDRAM
108 is 128 bits wide, in order to accommodate the LCD
controller 204. If the eDRAM were 32 bits wide, which
would be customary to support common RISC processor cores
and host processors, the eDRAM 108 would be dominated by
requests from supporting the LCD controller 204, such
that the other devices using the eDRAM would have to
compete with the LCD controller 204. Thus, the LCD
controller 204 would essentially become the primary user
of the eDRAM and the IPCM 116 and the host processor 106
would become secondary user. By providing a very wide
buffer that is the same width as the LCD bus 238, the LCD
controller 204 only briefly accesses the eDRAM 108
allowing the IPCM 116 and the host processor 106 to
become the primary users of the eDRAM 108. Thus,
configuring the eDRAM at 128 bits wide, the LCD
controller only uses about 2-3% of the eDRAM
capabilities, advantageously leaving 97% to the other
devices using the eDRAM. Note that the data path select
218 allows for the differently sized busses to access the
eDRAM 108.

The fact that the eDRAM 108 doubles as the
system memory and the video buffer further reduces space

19

10

15

20

25

30

35

O O

on the processor platform 100. If a separate dedicated
video buffer was employed, such as traditionally done,
this separate video buffer would occupy additional space
on the processor platform or be a separate integrated
circuit wired to the LCD controller 204, which would take
up even more space and introduce losses in the wiring.

In contrast to conventional discrete video buffers, the
eDRAM 108 of the processor platform 100 acts as both the
system memory and the video buffer within a small
footprint.

The following describes various other features
of the IPCM 116.

Since the IPCM allows DMA data transfers from
the peripherals mapped to the IPCM bus 236 to the either
the DSP RAM 104 or the eDRAM 108, the IPCM allows these
peripherals 230 to be used by the DSP 102 and/or the host
processor 106. For example, a data storage device, such
as the MMC 114 is accessible to the DSP 102 or host
processor 106. Thus, MP3 formatted data may be streamed
from the MMC 114 to the DSP 102 to affect an Internet
audio player. Other applications include using the IPCM
to write or read data files located on the MMC 114 by the
host processor 106. Furthermore, the IPCM can be
configured to move digital audio samples to and from the
DSP RAM 104 to a pair of USB isochronous ports; thus,
realizing a speakerphone. Additionally, the IPCM 116
supports multiple data streams originating and/or
terminating from either the eDRAM 108 or the DSP RAM 104.
The data transfers from each of the eDRAM 108 and the DSP
RAM 104 may be performed independently of each other.

Additionally, since the IPCM 116 contains a
RISC processor core (described in more detail with
reference to FIG. 3), it is smart programmable. Thus,
program tasks can be off-loaded from the host processor
106 via DMA data transfers from the eDRAM. For example,
the IPCM 116 may perform "bit-blit" tasks, normally

20

10

15

20

25

30

35

O O

performed by the host processor 106. "Bit-blit" tasks,
as known in the art of computer graphics, involve
altering the background displays of a visual display or
causing images to "fly" across a visual display. The
IPCM 116 can load the necessary program from the host
processor 106 to perform such tasks, instead of the host
processor 106 so that the host processor 106 is free to

perform other tasks.

Another application would be to off-load the
host processor 106 or the DSP 102 from performing packet
protocol framer functions such as "PPP" or the "LAP
layer" function used in the IrDA standard. Again,
advantageously the host processor 106 and the DSP 102 do
not have to perform these functions.

In one embodiment, the IPCM 116 supports an
external MPEG decoder coupled to either the SSI 212 or
the UART/IrDA 112 by sending packets to the decoder under
the control and supervision of the host processor 106.
The IPCM 116 retrieves the decoded pixel data from the
external MPEG decoder and deposits the pixel data into
the video buffer area allocated within the eDRAM 108. As
such, a "picture-in-desktop-window" is provided to the
LCD panel 250.

The IPCM takes advantage of the event timer 216
so that programmable DMA data transfers can be activated
according the event timer 216, in addition to being
activated by events triggered by the respective
peripherals and/or the DSP 102 and/or the host processor
106. Thus, pre-programmed DMA data transfers will

automatically occur at predetermined times.

Furthermore, in order to minimize power
consumption, the IPCM is designed to enter a low power
mode (i.e. sleep mode) when no events are pending. Thus,
the IPCM 116 will not unnecessarily drain battery life in

between DMA data transfers.

21

10

15

20

25

30

35

O O

InterProcessor Communication Module (IPCM

Referring next to FIG. 3, a block diagram is
shown of the interprocessor communication module (IPCM)
of the wireless multimedia processor platform 100 of
FIGS. 1 and 2. Shown is the IPCM 116 (also referred to
as a "programmable direct memory access module")
including a RISC processor core 302 (also referred to as
a RISC core of more generally as processor 302), an event
scheduler 304 (also referred to as an event detect unit
304, a task scheduler 304 or a programmable task
scheduler 304), static RAM 306 (also referred to as SRAM
306), read only memory 308 (also referred to as ROM 308),
DSP direct memory access unit 310 (also referred to as
DSP DMA unit 310), a host direct memory access unit 312
(also referred to as a host DMA unit 312), DSP control
registers 314 (also referred to as DSP control unit 314),
and host control registers 316 (also referred to as host
control unit 316). Also shown are the DSP system bus 226
("d" bus 226), the host system bus 232 ("h" bus 232) the
IPCM bus 234 ("i" bus 234), and the peripherals 230
including the USB 110, IrDA/UART 112, SSI 212 and MMC
114. Also shown are the event timer input 318 and
peripheral /DMA event inputs 320 into the event scheduler
304 via the event bus 228 ("e" bus 228).

The DSP control registers 314 and the DSP DMA
unit 310 are coupled to the d bus 226 via a bus
interface. The host control registers 316 and the host
DMA unit 312 are coupled to the h bus 232 via a bus
interface. The IPCM 116 also includes the i bus 234
which couples to the various peripherals 230. Within the
IPCM 116, the RISC processor core 302, the SRAM 306, the
ROM 308, the DSP control registers 314, the DSP DMA unit
310, the host control registers 316 and the host DMA unit
312 are all coupled to the i bus 234. Both the DSP DMA
unit 310 and the host DMA unit 312 each comprise a bus
transceiver portion of a conventional DMA controller.

The event scheduler 304 is coupled to the processor 302.

22

10

15

20

25

30

35

O O

Inputs to the event scheduler 304 are the event timer 318

and the peripheral/DMA events 320.

In operation, the IPCM 116 is provides
interprocessor and serial I/0 data transfers employing
direct memory access (DMA) techniques without actually
implementing individually dedicated hardware DMA channels
for all the various possible data transfer paths.
Advantageously, by providing the IPCM 116 to perform
these DMA data transfers, both the host processor and the
DSP are relieved of such tasks and can perform more
important tasks. Advantageougly, and in contrast to
traditional DMA circuits (also referred to as DMA
controllers) that establish hardwired unidirectional DMA
data channels, the IPCM 116 is a programmable DMA module
that provides programmable DMA data channels that may be
programmed to perform any one of three types of data
transfers: (1) from a selectable peripheral 230 to either
of two memories (e.g. DSP RAM 104 or eDRAM 108), (2) from
either of two memories to a selectable peripheral 230,
and (3) between the two memories. Thus, the IPCM 116
configures, for example, 32 programmable DMA data
channels, each one which can be configured for one of the
six types of data transfers. Advantageously, within the
physical footprint of approximately six conventional
hardware DMA controllers as known in the art, in one
embodiment, the IPCM 116 replaces 192 individual DMA
controllers and has the ability to configure 32 out of
192 possible DMA data channel configurations at any given
time. Each of these 32 programmed DMA data channels are
then used for DMA data transfers. Furthermore, these 32
data channels may then be re-configured to a different 32
out of the 192 possible DMA data channel configurations
at a later time or as needed. This proves very valuable
and flexible in space conscious applications, such as in

handheld devices.

In one embodiment, one of the 32 DMA channels

is reserved as a control channel from the host processor

23

10

15

20

25

30

35

O O

106 to the IPCM 116. Thus, the IPCM 116 can configure 31
DMA data channels out of 186 possible DMA data channel
configurations. Advantageously, this control channel
allows the host processor to be able to send a control
message to the IPCM to reconfigure one or more of a set
of 31 configured DMA data channels into another one of
the 186 possible DMA data channel configurations. Even
if there is no control channel, the entire set of 32
configured DMA data channels may be dumped and
reconfigured by the host processor.

In order to accomplish this programmable DMA
data transfer capability, the IPCM 116 includes a RISC
processor core 302 and also ROM 308 and the SRAM 306. In
some embodiments, the RISC processor core 302 comprises a
microRISC processor core. The RISC processor core 302 is
used to execute short routines or instructions (stored in
SRAM 306) which perform DMA data transfers. A specific
example, of a custom RISC processor core and its
instruction set are further described later in this
specification. Also included are a pair of DMA units,
DSP DMA unit 310 and host DMA unit 312, interface with
the RISC processor core 302 and use specialized,
dedicated registers for all DMA transfers. Thus, the DSP
DMA unit 310 and the host DMA unit 312 comprise the bus
transceiver portion of a conventional DMA controller.

The address register, data register and counter, for
example, of the conventional DMA controller are
implemented within the RISC processor core 302. As such,
the respective DSP DMA unit 310 and the host DMA unit 312
each represent two wired data paths to and from the RISC
processor core 302 and the respective busses, e.g. d bus
226 and h bus 232.

The ROM 308 contains startup scripts (i.e. boot
code) and the other common utilities which are referenced
by scripts that reside in the SRAM 306. An example set
of ROM scripts are attached in Appendix B. The SRAM 306

is divided into a processor context area and a code space

24

10

15

20

25

30

35

O O

area used to store channel scripts. Channel scripts are
downloaded into SRAM 306 from the eDRAM or from external
memory by the IPCM 116 using the host DMA unit 312.
Downloads are invoked using command and pointers provided
by the host processor. Each programmable or "wvirtual"
DMA data channel can be configured independently on an
"as needed" basis under the control of the host
processor. This permits a wide range of IPCM
functionality while using the lowest internal memory
footprint possible. Microcode routines can be stored in
an external memory, e.g. a large capacity Flash memory,

and downloaded when needed.

The task scheduler 304 is a programmable
scheduler that receives requests from the peripherals
230, host processor 106, and DSP RAM 102 for DMA data
transfers. These requests are in the form of "events"
detected on the e bus 228. 2An event is a condition that
arises that controls the operation of a particular
programmable DMA data channel. For example, an event is
an indication from one of the peripherals, the host or
the DSP (e.g. peripheral/DMA event inputs 320) that a DMA
data transfer is desired. An event may be a signal from
the host processor alerting the IPCM to re-program a
specific DMA data channel. An event may also be a timed
indication from the event timer (i.e. event timer inputs
318) that a DMA data transfer is to take place. For
example, depending on which line of the e bus 228 an
event is detected on, the task scheduler 304 can tell who
is making the request or indicating that a DMA transfer
is desired. The task scheduler 304 prioritizes and
manages the requests. The task scheduler 304 monitors
and detects external events for DMA data transfers, and
maps the event (e.g. signal indicating a DMA data
transfer is to be performed) to a particular DMA data
channel. The events are mapped as DMA data transfers
within a specific DMA data channel according to a

priority such that higher priority data transfers will

25

10

15

20

25

30

35

O @,

occur before lower priority DMA data transfers.
Furthermore, the task scheduler 304 is capable of
performing "priority-based preemption" in which a
particular DMA data transfer currently being executed by
the IPCM is interrupted (i.e. paused) so that a higher
priority DMA data transfer may be executed. Once the
higher priority DMA data transfer has been completed, the
DMA data transfer having been interrupted is then
resumed, unless another higher priority DMA data transfer
is requested. Priority-based preemption is known to
processors generally; however, conventional DMA
controllers are hardware-based (i.e. non-programmable)
and thus, not capable of such preemption.

Advantageously, this embodiment provides priority-based

preemption in a programmable DMA system.

The following is a brief description of the
data flow in the different types of programmable DMA data
transfers supported by the IPCM.

1. Peripheral to Memory

In operation, the various peripherals 230 are
responsible for gathering data to be input into the
processor platform. When data has arrived at the
particular peripheral, for example, at the MMC 114, the
peripheral signals an event to the task scheduler 304 of
the IPCM 116 via the event bus 228. The task scheduler
304 is able to handle 32 events at any given time. The
event is prioritized by the task scheduler 304 and mapped
to a particular DMA data channel. Once the event is to
be executed, the RISC processor core 302 runs software in
the form of scripts located in the SRAM 306. The
software is specific to the particular DMA data channel
and configures the particular DMA data channel. The
software effectively disciplines the RISC processor core
302 to affect the DMA data transfer from the specific
peripheral to the memory destination, e.g. either the
eDRAM or the DSP RAM. The DMA data transfer is performed

26

10

15

20

25

30

35

O O

by the software in the RISC processor core 302 such that
the data in the peripheral travels to the respective
memory via the i1 bus 234 and the respective DMA unit,
e.g. either the DSP DMA unit 310 or the host DMA unit
312.

Advantageously, the DMA data transfer occurs
without involvement of the either the DSP or the host
processor. Furthermore, by using the IPCM 116 which
includes the RISC processor core 302 and a single
hardware DMA circuit, e.g. host DMA unit 312, many
different DMA data paths are established through a single
hardwired DMA unit. Each of these data paths are
referred to as a programmable DMA data channel or a
"virtual" DMA data channel. For example, there may be a
DMA data channel or path from the USB 110 to the DSP RAM
104 and another DMA data channel or path from the SSI 212
to the DSP RAM 104, both of which travel through the DSP
DMA unit 310. Advantageously, either DMA data channel
may be later reconfigured as a different DMA data
channel, e.g. from the MMC 114 to the DSP RAM 104. Thus,
each peripheral to memory DMA data channel utilizes
either the DSP DMA unit 310 or the host DMA unit, but may
be may be programmably selectable as from any one of the
peripherals coupled to the IPCM 116.

2. Memory to Peripheral

This type of DMA transfer is opposite the first
type in that the transfer is from the memory of one of
the processor cores of the processor platform, e.g. the
DSP RAM or the host processor memory (e.g. eDRAM) to one
of the peripherals 230. The DSP, via the DSP control
registers 314, sgignals an "event" (data transfer) to the
task scheduler 304, which prioritizes the event and maps
it to a DMA data channel and signals to the RISC
processor core 302 to perform the data transfer. The
information provided by the DSP indicates a location in
the DSP RAM that the data is stored and how much data to

27

10

15

20

25

30

35

O O

transfer. Then, the RISC processor core 302 runs
software in the form of sgscripts located in the SRAM 306.
The software is specific to the particular DMA data
channel. The software effectively disciplines the RISC
processor core 302 to affect the DMA data transfer from
the DSP RAM 104 to the particular peripheral 230. The
transfer is performed by the software in the RISC
processor core 302 such that the data is copied from the
DSP RAM into registers within the DSP DMA unit, then
transferred to the peripheral via the i bus 234.

3. Memory to Memory

A third type of DMA data transfer is memory to
memory. For example, in the event data is to be
transferred from the DSP memory (e.g. DSP RAM 104) to the
host processor memory (e.g. eDRAM 108), the DSP would
assert an event to the task scheduler 304 of the IPCM
1l16. The task scheduler 304 recognizes the event,
prioritizes it and then causes the RISC processor core
302 to load scripts from the SRAM 306 to affect a DMA
data transfer from the DSP RAM to the RISC processor core
302 itself via the DSP DMA unit 310. For example, the
data is temporarily placed into registers within the RISC
processor core 302. Then, a DMA data transfer is
performed between the RISC processor core 302 and the
host processor memory (e.g. eDRAM 108) wvia the host DMA
unit 312. This is effectively a "back to back" DMA data
transfer. The IPCM 116 resolves differences in a memory
sizes. For example, if the DSP RAM is 16 bits wide and
the host processor memory is 32 bits wide, the IPCM will
gather 16 bit words and pack them into 32-bit words, then
transfer the 32-bit words to the host processor memory.

Once the complete "back to back" DMA data
transfer has taken place from the DSP RAM to the host
processor memory via the RISC processor core 302, the
IPCM 116 will signal to the host processor to inform it
that there is data stored in its memory. In other words,

28

i
B

10

15

20

25

30

35

O O

the RISC procesgor core 302 sends a control signal via
the host control registers 316 to the host processor,
giving the host processor a location pointer to an
address in the host processor memory where the data
beging and how many words have been placed in the host
processor memory starting at that address. At that
point, the host processor will retrieve the data at it's
convenience. Note that most DMA data transfers are many
bytes in length (e.g. 1000 bytes), requiring many
iterations before a transfer complete event is signaled.
This notification process is also the same in a
peripheral to memory transfer, i.e. the RISC processor
core 302 notifies the respective processor core, e.g. DSP

or host processor, that data is waiting in memory.

This is in contrast to a processor bridge, as
known in the art that allows data transfers between two
processors. For example, if a host processor wanted to
move data from the host to the DSP, the host would have
to interrupt the DSP, wait until the DSP was ready to
exchange data, then for a brief moment, the host
processor would control the DSP memory in order to effect
the transfer. This disadvantageously temporarily halts
both the DSP and the host processor during the data
transfer. Thus, the host memory and the DSP memory each

stop and communicate at the same moment.

In contrast, the IPCM 116 allows a direct
memory access data transfer from the host memory into the
RISC processor core 302 without interrupting the DSP.

The only activity required of the host processor 106 is
to transmit the control signals to signal an event to the
IPCM to perform the DMA data transfer of data from the
host memory into the RISC processor core 302. Next, a
DMA data transfer is performed from the RISC processor
core 302 into the DSP memory. The DSP then retrieves the
data from the DSP RAM. In this situation, neither the
DSP or the host processor have to stop for the other to

cause the transfer.

29

i)
FC
ot

10

15

20

25

30

35

O O

Referring next to FIG. 4, a diagram is shown
that illustrates the programmably selectable direct
memory access (DMA) data channels provided by the IPCM of
FIGS. 1, 2 and 3. Shown are the IPCM 116, the DSP DMA
unit 310, the host DMA unit 312, the RISC processor core
302, the i bus 234, the d bus 226, and the h bus 232.

The DSP DMA unit 310 includes a first DSP DMA data
connection 402 and a second DSP DMA data connection 404.
The host DMA unit 312 includes a first host DMA data
connection 406 and a second host DMA data connection 418.

The IPCM 116 includes the DSP DMA unit 310 and
the host DMA unit 312. Each DMA unit 310 and 312
comprises a bus transceiver portion of a conventional DMA
controller and forms 2 hardwired DMA data connections
(through which programmable DMA data channels are
established for DMA data transfers), one in the direction
of RISC processor core 302 to memory and the other in the
direction of memory to RISC processor core 302. These
four DMA data connections are programmed by the RISC
processor core 302 of the IPCM to act as if they
together, with the RISC processor core 302, were 192 (186
if one of the DMA data channels is a control channel)
actual hardware DMA controllers. In contrast,
conventional DMA controllers only allow one dedicated DMA

channel to be established using a DMA data connection.

In a broad sense, the RISC processor core 302
acts as a switch between devices and the various wired
DMA data connections. Thus, the first host DMA channel
data connection 406 may be configured or programmed as
many different programmable DMA data channels, e.g., a
DMA data channel from the USB 110 to the eDRAM 108, a DMA
data channel from SSI 212 to eDRAM 108, and a DMA data
channel from MMC 114 to eDRAM 108. These different DMA
data channels utilizing the first host DMA data
connection 406 may be referred to as "virtual" DMA data
channels, since they effectively provide more DMA data

channels than exist in hardware. Thus, the first host

30

10

15

20

25

30

35

O O

DMA channel 406 is programmably selectable such that it
can support DMA data transfers from any one of several
peripherals or from the originating node of the second
DSP DMA data connection 404 to a memory at the
destination end of the first host DMA data connection
406, e.g. the eDRAM 108. Thus, the RISC processor core
302 and a single DMA unit, e.g. host DMA unit 312,
replace many separately wired conventional DMA

controllers.

Likewise, the second host DMA data connection
408 may be programmably selectable into "virtual" DMA
data channels from the originating end or node (e.g.
eDRAM 108) and to any one of several peripherals or to
the destination node of the first DSP DMA data connection
402. These virtual DMA data channels each utilize the
second host DMA data connection 408. Furthermore, a
"back to back" DMA data channel may be affected through
the second host DMA data connection 408 and the first DSP
DMA data connection 402 via the RISC processor core 302.

Custom RISC Processor Core/IPCM

It is noted that the RISC processor core may be
a standard RISC processor as 1s known in the art.
However, custom RISC processors may be designed which may
improve performance in the IPCM 116. The following is a
description of a specific embodiment of a custom RISC
processor core and IPCM for use as the IPCM of FIGS. 1-4.

The custom RISC processor core 302 is a 32-bit
register architecture with 16-bit instructions. There
are 8 general purpose 32-bit registers, 4 flags (T, LM,
SF, and DF) and PCU registers (PC, RPC, SPC, and EPC) as
known in the art. The RISC processor core 302 is a two
stage pipeline and also includes ROM 308 and the SRAM
306. The ROM 308 is 1k byte (configured as 256x32) and
the SRAM 306 is 8k byte (configured as 2048x32).

The custom RISC processor core 302 (hereinafter
simply referred to as the RISC processor core 302) is

31

[i !

10

15

20

25

30

35

O O

used to execute short routines which perform DMA data
transfers. The instruction set (stored in SRAM 306) is
comprised of single cycle instructions with the exception
of Load/Store, CRC, DMA, and branch instructions which
take two, or more cycles, to execute. A preferred
instruction set is provided in Appendix A, which is
attached hereto. The i bus 234 supports a 32-bit data
path and a 16-bit address bus. A pair of DMA units, DSP
DMA unit 310 and host DMA unit 312, interface with the
RISC processor core 302 and use specialized, dedicated
registers for all DMA transfers.

The ROM 308 contains startup scripts (i.e. boot
code) and the other common utilites which are referenced
by scripts that reside in the SRAM 306. The SRAM 306 is
divided into a processor context area and a code space
area used to store channel scripts. Channel scripts are
downloaded into SRAM 306 from the eDRAM or from external
memory by the IPCM 116 using the host DMA unit 312.
Downloads are invoked using command and pointers provided
by the host processor. Each programmable or "virtual"
DMA data channel can be configured independently on an
"as needed" basis under the control of the host
processor. This permits a wide range of IPCM
functionality while using the lowest internal memory
footprint possible. Microcode routines can be stored in
an external memory, e.g. a large capacity Flash memory,

and downloaded when needed.

The task scheduler 304 is responsible for
monitoring and detecting external events, mapping events
to DMA data channels (also referred to simply as
channels) and mapping individual channels to a
pre-configured priority. At any point in time, the task
scheduler will present the highest priority channel
requiring service to the IPCM 116. A special IPCM core
instruction is used to "conditionally yield" the current
channel being executed to an eligible channel that
requires service. If, and only if an eligible channel is

32

Y
HIES

10

15

20

25

30

35

O O

pending will the current execution of a channel be
pre-empted. There are two "yield" instructions that
differently determine the eligible channels: in the first
version, eligible channels are pending channels with a
strictly higher priority than the current channel
priority; in the second version ("yieldge"), eligible
channels are pending channels with a priority that is
greater or equal to the current channel priority. The
task scheduler 304 detects devices (e.g., channels)
needing service through the 32 input event port (the
event timer input 318 and the peripheral/DMA events 320).
After an event is detected, and only if it is mapped to a
channel, the channel event is latched into the "Channel
Pending (EP)" register. The priorities of all pending
channels are combined with control bits set by the host
processor and the DSP and continuously evaluated in order
to update the highest pending priority. Each bit in the
channel pending register is cleared by the channel script

software when the channel service routine has completed.

The Host Control module (i.e. host control
registers 316) contains several small RAM blocks
organized as an array which are used to control (i.e.,
channel mapping) the 32 individual channels. The Channel
Enable Register is the largest RAM array (32bits X
32bits) and is used to map events to a specific
channel (g8) . The second array is the Priority RAM and is
used to assign channels to a programmable 1-0f-7 level

priority.

The 32 event inputs connected to the task
scheduler via the e bus 228 come from a variety of
sources and are analogous to interrupt request signals.
The receive register full and transmit register empty
events that are found in UART and USB ports are typical
examples of signals connected to the Event Port on the
IPCM. Some of the event inputs are sourced from the
Layer 1 timer (e.g. event timer 304). Within the Layer 1
timer are register based compare/capture blocks which can

33

[

g
i

&l

o
I

10

15

20

25

30

35

O O

be used to signal an event for a unique, momentary state
of the Layer 1 timer. These events can be used to
trigger a specific IPCM channel or channels. This
feature can be used to realize a "just-in-time" data
exchange between the two processors (e.g. DSP and host
processor) to relax the requirement to meet critical
deadlines.

" The embedded nature of the IPCM requires
on-chip debug capability to assure product quality and
reliability and to realize the full performance
capabilities of the core. The OnCE compatible debug
port includes support for setting breakpoints, single
step & trace and register dump capability. In addition,

all memory locations are accessible from the debug port.

The IPCM 116 has two memory spaces: one for the
instructions and one for the data; as both spaces share
the same resources (ROM and RAM devices), the system bus
manages possible conflicts when the IPCM accesses the
same resource for both instruction read and data read or

write.

Instructions, that are 16-bit wide, are stored
in 32-bit wide devices and are also accessible as data.
The correspondence is Big Endian: an even instruction
address (terminated by “0') accesses the Most Significant
part of the 32-bit data (bits [31:16]) and an odd
instruction address (terminated by ~I') accesses the
Least Significant part of the 32-bit data (bits [15:0]).

Instructions can be fetched from the IPCM ROM
and RAM. The ROM, RAM, peripherals (USB, UART1, UART3,
MMC and VSAP) and memory mapped registers are accessible
as data.

The task scheduler 304 is a hardware based
design used to coordinate the timely execution of 32
programmable selectable DMA data channels (virtual DMA
channels) by the IPCM on the basis of channel status and
priority. The task scheduler performs the following

34

10

15

20

25

30

35

O O

functions: (1) monitors, detects, and registers the
occurrence of any one of the 32 event inputs provided;

(2) links a specific event input to a specific channel or
group of channels (channel mapping); (3) ignores events
which are not mapped to a previously configured

channel (g); (4) maintains a list of all channels
requesting service; (5) assigns a pre-programmed priority
level (1 of 7) to each channel requesting service; and

(6) detects and flags overrun/underrun conditions.

A programmable DMA data channel or virtual DMA
data channel (hereafter simply called a channel) manages
a flow of data through the IPCM 116. Flows are typically
unidirectional, but are reconfigurable or reprogrammable.
The IPCM can have 32 simultaneously operating channels,
numbered 0 to 31. Channel 0 is dedicated for use by the
host processor 106 to control the IPCM 116. All other

channels can be assigned by the host processor software.

An event is a condition that arises which can
control the operation of a channel. Events may be caused
by externally (i.e., external to the IPCM) controlled
conditions (e.g., UART receive FIFO reaches a threshold)
or by the firing of internal timers (e.g. the event
timer). The IPCM will implement at most 32 events, which
occur randomly with respect to each other. Thus, events
are designed to arrive at the task scheduler randomly
while the task scheduler can handle 32 events at any one

time.

The task scheduler 304 maps events to channels
and prioritizes events. A channel can stall waiting on a
single event. A single event can awaken more than one
channel (e.g., the L1l timer). The mapping from an event
to the channels it affects is under program control.
There is a register for each of the 32 events which
contains a bit map. There is 1 bit for each channel,
which determines which channels are awakened by the
event. There is also a register for each of the 32

35

10

15

20

25

30

O O

channels which contains the priority at which the channel

will operate.

A hardware scheduling block implements a
scheduling algorithm such that, when a script executes an
instruction that allows rescheduling, the highest

priority script that has a pending event will be run.

Multiple channels may be runnable at any given
time. The task scheduler 304 (hardwired logic) picks the
highest priority channel to run when the current channel
yields. Yielding channels may block on an external event
or awaiting intervention by the host processor 106 or
signal processor 102. The I-th channel is runnable only
if the following is true;

(HE[i] 1 | HO[i[) & DDE[il] | DOI[i]l) & (EP[i] | EOI[il)
The host enable bit HE[i], for each channel may
be set or cleared by the host processor. It can be

cleared by a script.

The host override enable bit, HO[i], for each
channel may be set or cleared by the host processor. By
setting this bit, the host processor 106 may allow
channels that do not involve it, like a communication
between the DSP 102 and a peripheral 230.

The dsp enable bit, DE[i], which is set or
cleared by the dsp. It can be cleared by a script.

The dsp override bit, DO[1i], which is set or

- cleared by the host processor. By setting this bit, the

host processor can prevent the DSP from stalling a
channel. This will be the case when a channel transfer

does not involve the DSP.

The event pending bit, EP{i], which is an
output of the task scheduler. It can be cleared by a
script. It also can be set by the host to override the

event/channel connection matrix.

The event override bit, EO[i], which is set or

36

o o 0

=

=
wiE

10

15

20

25

30

35

O O

cleared by the host processor. By setting this bit, the
host processor may prevent a channel from stopping to
await peripheral events. This will be the case when the
channel is not handling i/o events, e.g., a host

processor to DSP DMA data transfer.

All of the HE[i], HOI[i], DE[i], DO[i], ERI[i],

and EO[i] are set to zero on reset.

The IPCM 116 can clear the HE[i], DE[i], and
EP[i] bits by means of the done instruction or the notify
instruction. The done instruction causes a reschedule
while the notify instruction does not. The done and
notify instructions can clear one (and only one) of the

following bits:
HE[I], DE[I], or EPI[I]

When several channels with the same priority
are eligible; the hardwired selection tree will .
automatically select the channel with the highest number:
i.e., if channel 7 and channel 24 with priority 4 are
both pending, channel 24 will be next channel to run.

In the case of the "yieldge" instruction (i.e.
yield if greater or equal), and channels with the same
priority as the current channel are pending, the behavior
is driven by the hardwired selection tree as described
above. For example, given three channels (i.e. 7, 23 and

29) that have the same highest priority.

Channel 7 is active and runs a "yieldge"; it is
preempted by channel 29; after a while channel 29 runs a
"yieldge", it is then preempted by channel 23 that is the
selected channel as channel 29 does not belong to the
selectable channels because it is the current channel.
Later on, channel 23 runs a "yieldge" and is preempted by
channel 29. Channels 23 and 29 will go on switching
after every "yieldge" until one of them terminates. It
is only at that point that channel 7 becomes eligible.
During that example, it is supposed that no other

37

==
b3
fusd

10

15

20

25

30

35

O O

eligible channel is pending.

Referring next to FIG. 5, an illustration is
shown which demonstrates the functionality of a specific
embodiment of the task scheduler used in a custom RISC
processor of FIG. 3 in accordance with an embodiment of
the present invention. Shown is edge detection and latch
unit 502, multiplexer 504, counter 506, Channel Enable
RAM 508, Channel Pending Register 510 (EP which produces
the event pending bit EP[i]), "OR" gate 512, "AND" gate
514, Channel Error Register 516, host enable register 518
(HE which produces the host enable bit HE[i]l), host
override enable register 520 (HO which produces the host
override enable bit HOI[i]), dsp enable register 522 (DE
which produces the dsp enable bit DE[i]l), dsp override
register 524 (DO which produces the host override bit
DO[i]l), event override register 526 (EO which produces
the event override bit EO[i]), decision tree 528,
priority register 534, highest pending priority register
530 (HPPR), and highest pending current channel register
532 (HPCR).

The task scheduler 304 contains a 3 stage
pipeline for processing and prioritizing event inputs.
The first stage of the pipeline scans the event inputs
and maps detected events to an active channel(s). The
second stage of the pipeline maintains a list of channels
requesting service (Channel Pending Register) and assigns
a priority to all pending channels from the Priority RAM
534 while the third stage identifies the top priority and
the associated channel.

The priority output of the task scheduler is
applied to the RISC processor core of the IPCM and
compared to the priority currently being executed by the
RISC processor core. The core maintains the current
priority in a Program Status Word (PSW). Priority-based
preemption will occur if the task scheduler priority is

greater than the current priority when a yield

38

il

10

15

20

25

30

35

O O

instruction is encountered.

The following text contains a description of
the pipeline of the task scheduler.

The first stage (stage 1) of the pipeline
contains a 32 bit edge detection and latch unit 502
placed in front of a 32X1 digital multiplexer 504
(referred to as mux or M1l). The mod 32 counter 506
drives the mux 504 select input and the mux 504 sequences
through 32 event inputs. A logic "1" is applied to the
32x32 entry Channel Enable RAM 508 for each corresponding
logic "1" being scanned; thus mapping an event to a
channel. The edge-detect latch corresponding to the
event scanned is automatically cleared on the next clock
cycle. A positive detect on one of the event inputs
supplies a read enable signal to the Channel Enable RAM
508. An event can take up to 32 clocks to be detected.
Once detected, an event can propagate from the mux 504
through the Channel enable RAM 508 in 1 clock cycle.

In the second stage, The Channel Enable RAM 508
is addressed by the same 32 bit counter 506 and is a
square (32X32) array having a single bit provided for
each event across each channel. A logic "1" output is
produced from the channel enable RAM 508 on the data
output port if a channel is enabled and the corresponding
event is detected. This signal is latched into the
corresponding position within the Channel Pending
Register 510. The detected event propagates from the
Channel Enable RAM 508 to the Channel Pending Register
510 in 2 clock cycles. The Channel Pending Register 510
(EP) is a 32 bit register having one bit for each of the
32 channels. Note that the number of channels asserted
to the Channel Pending Register 510 on any given clock
cycle is determined by the number of bits set to "1" in
the 32 bit mask corresponding to the address selected by
the 5 bit counter. An "OR" gate 512 is used to provide
"present state feedback" to trap and hold a detected

39

et
it
H
==

10

15

20

25

30

35

O O

event in the Channel Pending Register 510. Also note
that a "bit clear" input is provided to allow the IPCM
core to clear a specific bit in the Channel Pending
Register 510. This operation is performed by the IPCM
core through a software instruction when the
corresponding channel has been serviced.

Lastly, a group of 32 "AND" gates 514 is used
to detect the reassertion of an event which has not been
serviced. 1In other words, if an event is signaled and
the channel is already pending, then a corresponding bit
signifying and overrun/underrun condition is latched into
a Channel Error Register 516. The host processor is then
gignaled of any errors in the task scheduler.

In the third stage of the pipeline, the output
of former Channel Pending Register 510, as well as output
of EO register 526, HE register 518, HO register 520, DE
register 522 and DO register 524, and the priority
register 534 (which stores the current priorities) to
determine which channels are enabled and have to be

ordered through the decision tree 528.

" This priority tree 528 will deliver, on a cycle
by cycle basis, the enabled channel with the highest
priority (a channel "i" is said enabled if)EP[i] | EOI[il)
& (HE[i] | HO[i]) & (DE[i) | DO[i]) is set to one for this

particular channel).

In case multiple enabled channels with the same
priority are eligible, the first one detected will be
elected (the detection starting with channel 31 and going
downwards; i.e., if channel 13 and channel 24 are both
eligible, channel 24 is selected).

The "tree architecture" allows dynamic
modification of (EP[i] | EO[i]) & (HE[i] | HO[i]l) & (DEI[i]
| DO[i], as well as dynamic modifications of priorities.

The propagation time is one clock from the
Channel Pending Register 510 to the FIFO.

40

O O

The following is a brief summary of the steps
of the task scheduler of FIG. 5, referring to numbers
corresponding in FIG.5 to the portion of FIG. that
performs the step.

5 At step 1, the Digital mux 502 scans event
inputs. All inputs are edged sensed and latched until
scanned. After scanning they are automatically cleared.
At step 2, a bit in the Channel Pending Register 510 is
"set" when the corresponding bit in the event and Channel

10 enable register 508 map produces a positive result. At
step 3, the Channel Pending Register 510 (EP) is
continuously combined with bits from the EO, DE, DO, HE
and HO registers, and together with the priorities, feeds
the decision tree 528. At step 4, the value in the

15 highest pending priority register 530 (HPPR) presents the
highest priority currently pending service to the RISC

processor core. At step 5, the Channel Error Register
516 captures occasions when a channel is pending and a
another subsequent event is detected on that channel. At

20 step 6, the IPCM core clears single bit in Channel
Pending Register 510 when the channel has been serviced.

P
=
=

- Once cleared, the channel may be reasserted when another

event has been detected.

On execution of a done instruction the program

25 control unit will jump to a context switch subroutine
(see Appendix B- EXAMPLE ROM SCRIPTS FOR RISC PROCESSOR
CORE OF IPCM, and spill current context to memory. The
"real context switch", where CCR (Current Channel
Register) (not shown in FIG. 5, but located within the

30 RISC processor core of the IPCM) changes to HPCR 532
(Highest Pending Channel Register), takes place on
execution of TstPendingAndSwitch instruction, after the
current context has been spilled to memory.

The context switch program (see Appendix B) can
35 Dbe divided into 6 parts: (1) Load current context's spin
base address; (2) Spill registers of current context to

41

10

15

20

25

30

35

O O

memory; (3) Test Pending Channel and react appropriately
(TstpendingALnd Switch); (4) Load new context's base
address; (5) Download new context; and (6) Copy shadow
registers.

On execution of TstPPendingAndSwitch
instruction, if there is no longer an HPPR 530 (Highest
Pending Priority Register) is null, due to modifications
of (HE[i] | HO[i]l) & (EP[i) | EO[i] & DE[i] | DO[i] or
priorities modifications), the RISC core will enter

its IDLE mode, else the second half of the context switch
script will be executed, and the context of the elected
channel will be downloaded.

In case we enter IDLE mode (i.e., in case
HPCR/HPPR is empty after the context spill to memory has
finished), on a new event we will continue the second
half of the script and downlocad the context of channel

associated to the new event.

Once elected, Current Channel Register's status
(CCR) and Current Channel Priority (CPRi) can not be
modified, even if the associated (HE[i] | HO[i]) & (EP([i]
| EO[i] & DE[i] | DO[il] condition transitions to zero or
if the priority associated to this channel is dynamically
modified by the host.

The yield (done 000) will be handled on a
different way in case after the spill part of subroutine,
HPCR/HPPR is empty. In this particular case, we will
continue the script and download back the context we just
spilled to memory.

The following portion describes several of the
functional units of the IPCM 116.

In one embodiment, the custom IPCM includes a
cyclic redundancy check (CRC) unit (not shown) which is
coupled to the RISC processor. It can perform CRC
calculation for a set of given polynomials from degree 8
to 32. The CRC unit includes two 32 bit registers: the

42

10

15

20

25

30

35

O O

CRC algorithm CA which selects the polynomial and the CRC

checksum CS to accumulate the data after each processing.

After loading both registers to select the
polynomial and initialize the calculation, the CRC unit

is able to process one byte every clock cycle.

The DSP DMA unit 310 receives instructions from
the RISC processor core 302. It is able to read and
write data from/to the DSP memory via DMA accesses and it
allows 32-bit and 16-bit transfers to the Quartz DMA.

There are two major registers used by the DSP
DMA 310: the address register (DA) that contains the
address of the data to read or write in the Quartz memory
and the data register (DD) that contains the data itself.

Due to its prefetch and flush capabilities, the
DSP DMA 310 is able to perform accesses to the Quartz
memory without stalling the RISC processor core so that
it can execute other instructions while the DSP DMA 310

waits for the read or write command to complete.

The host DMA unit 312 receives instructions
from the RISC processor core 302 (also referred to as the
IPCM core). It is able to read and write data from/to
the embedded DRAM 108 or the external memory 244 via DMA
accesses and it allows 32-bit, 16-bit and 8-bit
transfers. The external memory 244 accesses are done
through an MCORE local bus (MLB) switch.

There are two major regigters used by the Host
DMA 312: the address register (MA) that contains the
address of the data to read or write in the Quartz memory
and the data register (MD) that contains the data itself.

Due to its prefetch and flush capabilities, the
Host DMA 312 is able to perform accesses to the host
processor (e.g. MCORE) memory (i.e. eDRAM 108) without
stalling the RISC processor core 302 so that it can
execute other instructions while the Host DMA unit 312
waits for the read or write command to complete. Note

43

10

15

20

25

30

35

@ O

that MCORE is a known host or call processor.

An IPCM bus Switch allows the host DMA unit 312
to access external memories through the MCORE's EIM
module connected to the MCORE Local Bus (MLB). It also
allows other devices (such as the MCORE Test module, the
NEXUS module or the GEM module) to take control of the
MLB.

Furthermore, The IPCM 116 internally manages
two power modes: RUN and IDLE. In RUN mode, all the
modules of the IPCM 116 receive a 100 MHZ IPCM clock.
The IPCM 116 is in RUN mode when a channel is active.

In IDLE mode, all the channels have been
serviced and no more channels are pending; this is the
mode after reset. Most of the IPCM modules do not
receive the 100 MHZ clock any more: the RISC processor
core, the functional units and the bus arbitration logic.
The task scheduler 304 continues to work as it has to
sample incoming events and decide when the RISC processor
core 302 should start again to service a new channel.

The host control modules 316 and DSP control modules 314
that hold the control registers of the IPCM 116 still
receive the 100 MHZ clock as they may be accessed by the
host processor 106 or the DSP 102 while the IPCM 116 is
in IDLE mode. The IDLE mode conserves power, which is
important in battery operated environments.

It is also possible for the host processor to
completely stop the IPCM 116 through a clock controller.
In that case, no clock at all is received by the IPCM 116
and it is not possible for the IPCM 116 to restart its
clock. It is up to the host processor to restore the
IPCM clock. This functional mode can be useful when no

data transfers are required through the IPCM 116.

Afer reset (either received from the reset
module or a software reset required by the host
processor), the IPCM 116 is in idle mode; it will start
its boot code located at address 0 once a channel is

44

a i

1

L3

10

15

20

25

30

35

O O

activated. Activating a channel can be done by the host
processor after programming a positive priority and
setting the channel bit in the EVTPEND register.

It is important to notice that when the IPCM
116 is in IDLE mode, it is impossible to perform the OnCE
debug actions that need to execute instructions on the
core; beforehand, the IPCM must be wakened by activating
a channel. One possibility is to perform a debug request
through the OnCE, and then activate any channel, which
will start the IPCM clock and the core will immediately
enter debug mode without executing any instruction. More
details can be found in the OnCE specific chapter.
Another possibility is to use a JTAG module to switch off
IPCM clock gating, which enables it to immediately
respond and does not require to have an active channel;
in that mode, clocks are always running, whatever the
IPCM mode.

The following text describes the software
interface used to operate the programmable DMA data
channels of the IPCM 116.

Referring next to FIG. 6, a diagram is shown of
the pointers and memory buffers within the IPCM and the
host processor memory and which are used for each of the
programmable direct memory access data channels. Shown
is the IPCM including table 602 including a pointer
register 604, a channel enable register 606, DSP override
register 608 and event override register 610. Also shown
is the system RAM 601 including Table 612 which includes
channel pointers 613. The system RAM 601 also includes
Table 614 including a buffer pointer 616, count field 619
and mode field 620. And the system RAM also includes
buffers 618.

This section describes buffer management
mechanism used between IPCM 116 and either the host
processor 106 (also referred to as Host MCU) or DSP 102.

The IPCM relies on having a minimum of one or more memory

45

O O

buffers for each channel that is active. These channel
buffers must be located in the system RAM 601 (e.g. eDRAM
108) of the MCU and DSP (e.g. DSP RAM 104) respectively.
Buffers are described and managed through the use of

5 wvirtual control registers implemented as a Linked-List
residing in the system RAM 601 area of the MCU and DSP.
The following describes the control structure for the
Host MCU port.

Table 602 is a group of hardware registers
10 1located within the IPCM 116. The pointer register 604 is
a 32-bit read/write register accessible by the Host Core
that contains a pointer to Table 612, which is a
structure of pointers 613. The pointers 613 and 604 may
reference any memory location within the system RAM 601.

15 System programmers should be advised that
optimal performance is realized when Table 612 and Table
614 are located in the main system RAM 601 (e.g., eDRAM
108 in the case of a smart phone).

Table 612 is a fixed structure of 32 entries.
20 Each entry represents one of the 32 IPCM DMA data

i

channels and contains a 32-bit pointer. The IPCM 116
uses the pointer in Table 602 to find Table 612. Table
612 must be present in its entirety even when all 32

|

channels are not used. The IPCM 116 will not use pointer
25 entries for channels which are not enabled (e.g., a bit
set in the channel enable register 606).

It is intended that the value of the pointer(s)
in Tables 602 and 612 remain "static" for the duration of

the IPCM operating session.

30 Table 614 contains the operating command and
status registers, a buffer size descriptor (e.g. count
field 619) and a pointer 616 to the physical buffer 618
itself. The dedicated table 614 must be present for each
of the 32 channels and is implemented as a Linked-List

35 structure. This technique permits one or more buffers
618 to be allocated to a single DMA channel and thereby

46

10

15

20

25

30

35

O O

enables a variety of implementation schemes such as
buffer swapping and daisy chaining.

In operation, the IPCM 116 will read the
command register element of the first buffer described in
the list and rise that buffer 618 until it is filled to
capacity or closed by some event. The IPCM 116 will
refer back to the Linked-List and open the next buffer in
the list if one is declared. When the IPCM 116 reaches
the end of the list, all buffers 618 will have been
filled, or closed, arid the specific IPCM channel
referenced by Table 614 will be shutdown. The channel
may be restarted by the MCU updating the contents of
Table 614 for the respective channel followed by
asserting the appropriate channel enable bit in the
Channel Enable Register 606 located in the IPCM.

A variety of operating scenarios are possible
using the modes provided. Buffers 618 may be alternately
swapped, daisy chained, or operated in modulo mode.
Interrupts may be generated to the Host MCU or DSP when a
specific buffer is filled, or closed, by configuring the
appropriate control bit within the Mode Register.

The Mode field 620 within the structure of
Table 614 contains a control bit to serve as a semaphore
and referred to as the "D" bit. When set the buffer is
owned by the IPCM and the count, pointer, status, and
control fields must not be changed by the MCU. When D=0,
the MCU owns that particular buffer and the IPCM will not
attempt to write into any of the control fields or buffer
space.

Note that the channel interface to Quartz DSP
is similar to that of the host MCU.

Host Processor Programming Model

The host processor 106 (simply referred to as
the host) controls the IPCM 116 by means of several
interface registers. They are all accessed with 0

47

10

15

20

25

30

35

O O

wait-state on the ip bus interface except the once
command register (ONCE_CMD) that requires 1 wait-state
and the CHENENBL RAM that also requires 1 wait-state.
They are all clocked with the IPCM clock (which means the
Host must ensure the IPCM clock is running when it wants

to access any register).

Regarding read & write authorized sizes; any
read puts the 32-bit contents of the register on the bus
regardless of the read size (i.e., byte enables are
ignored); any write updates the contents of the register
according to the required size (i.e., byte enables are
used to allow writing of the corresponding byte from the
bus to the register) except when writing to the CHNENBL
RAM that always stores the full size word on the bus
(32-bit) into the RAM, regardless of the size.

Following are the registers of the host
processor used in controlling the IPCM 116 in accordance
with one embodiment of the invention.

COPTR (Channel 0 Pointer). This register
contains the 32-bit address, in host memory, of the array
of channel control blocks starting with that for channel
0 (the control channel). The host has a read/write
access, the IPCM has a read-only access. On reset, this
register will be all zeros. This register should be
initialized by the host before it enables a channel (e.gq.
channel 0).

INTR- Channel Interrupts. This register
contains the 32 HI[i] bits. If any bit is set, it will
cause an interrupt to the host. This register is a
"write-ones" register to the host. When the host sets a
bit in this register, the corresponding HI[i] bit is
cleared. The interrupt service routine should clear
individual channel bits when their interrupts are
serviced, failure to do so will cause continuous
interrupts. The IPCM is responsible for setting the
HI[i] bit corresponding to the current channel when the

48

L=
s
i §
==

10

15

20

25

30

35

O O

corresponding done instruction is executed.

STOP/STAT- Channel Stop/Channel Status. This
32-bit register has one bit for each channel. This
register is a "write-ones" register to the host. When
the host writes I in bit i of this register, it clears
the HE[i] and STARTI{i] bits. Reading this resister
yields the current state of the HE[i] Dbits.

START- Channel Start. This 32-hit register has
one bit for each channel. This register is a
"write-ones" register to the host. Neither START[i] bit
can be set while the corresponding HE[i] bit is cleared.
When the host tries to set the STARTI[i] bit by writing a
one, if the corresgsponding HE[i] bit is clear, the bit in
the START[i] register will remain cleared and the HE([i]
bit will be set. If the corresponding HE[i] bit was
already set, the STARTI[i] bit will be set. The next time
the IPCM channel i attempts to clear the HE[i] bit by
means of a done instruction, the bit in the START[i]
register will be cleared and the HE[i] bit will take the
0ld value of the START[i] bit. Reading this register
yields the current state of the START [i] bits. That
mechanism allows the Host to pipe-line two START commands
per channel.

EVTOVR- Channel Event Override. This register
contains the 32 EO[i] bits. A bit set in this register
causes the IPCM to ignore events when scheduling the
corresponding channel. Writing in this register

overwrites the previous value.

DSPOVR- Channel DSP Override. This register
contains the 32 DO[i] bits. A bit set in this register
causes the IPCM to ignore DSP enable when scheduling the
corresponding channel.

HOSTOVR- Channel HOST Override. This register
contains the 32 HO[i] bits. A bit set in this register
causes the IPCM to ignore HOST enable when scheduling the

corresponding channel.

49

10

15

20

25

30

35

O O

EVTPEND- Channel Event Pending. This register
contains the 32 EP[i] bits. Reading this register allows
the host to determine which charnels have events
pending. Setting a bit in this register causes the IPCM
to reevaluate scheduling as if a peripheral event
destined for this channel had occurred (this a
“write-ones' mechanism: writing an “0' does not clear the
corresponding bit). This is useful for starting up
channels, so that initialization is done before awaiting
the first event. The task scheduler can also sets bits
in the EVTPEND register, according to the received
events. The EP[i] bit may be cleared by the done
instruction when running channel I script.

DSPENMBL- Channel DSP Enable. This register
contains the 32 DE[1i] bits (from the DSP Control module
or control registers). This register enables the host to
determine which channels the DSP has enabled.

RESET- Reset Register. This register contains
two control bits: (1) the reset bit (RESET[0]), when set
causes the IPCM to be held in software reset. The reset
has to be held some cycles before it cam be released.
Actually a counter is used to keep the soft reset
(soft_rstB low) active during these cycles. The
soft_rstB signal is driven low as the reset bit is set.
The reset bit is cleared by the IPCM. And (2) The
resched bit (RESTI[i]), when set, forces the IPCM to
reschedule. as if a script had executed a done
instruction. This allows the host to recover from a
runaway script on a channel by clearing its HE[i] bit via
the STOP register and then forcing a reschedule via the
RESCHED bit of the RESET register. When the context
switch starts. the resched bit is cleared by the IPCM.

EVTERR- Event Error Register. This register is
used by the IPCM to warn the host when an incoming event
was detected and it triggers a channel that is already
pending or being serviced. That probably means there is

50

10

15

20

25

30

35

O O

an overflow of data for that channel. This is a
"write-ones" register for the scheduler; it is only able
to set the flags; the flags are cleared when the register
is read by the Host or during IPCM reset.

Any EVTERR[i] bit is set when an event that
triggers channel i has been received through the event
input pins and the EP[i] bit is already set; the
EVTERR{i] bit is unaffected if the Host tries to set
EP[i] bit whereas that EP[i] bit is already set.

This register is NOT the same as the DSP
EVTERR: when the Host reads and clears it, the same
information is still available in the DSP register.

INTRMASK- Channel Interrupt Mask Flags. This
register contains 32 interrupt generation mask bits. If
bit INTRMASK[i] is set, the HI[i] bit is set and an
interrupt is sent to the Host whenever an event error is
detected on channel i (i.e., EVTERRI[i] is set).

PSW- Scheduler Status. This is a 16-bit
register with the following status information: [4:0]CCR
(current channel register); [7:5]CCP (current channel
priority); [12:8]NCR (next channel register); and
[15:13]NCP (next channel priority).

EVTERRDBG- Event Error Register for Debug.
This register is the same as EVTERR except reading it
does not change its contents (i.e., it is not cleared);
that address is meant to be used in debug mode: the MCU
OnCE may check that register value without modifying it.

ONCE_ENB- OnCE Enable. That one-bit register
selects the OnCE control source; when cleared (0), the
JTAG controls the OnCE; when set (1), the Host controls
the OnCE through the registers described below. After
reset, the Once enable bit is cleared (JTAG controls).

ONCE_CMD- OnCE Command Register (1 wait state).
Writing to that register will cause the OnCE to execute
the written command; when needed, the ONCE_DATA and

51

10

15

20

25

30

35

O O

ONCE_INSTR registers should be loaded with the correct

value before writing the command to that regisgter.

CSWADDR- Context Switch Address. A 15-bit
register that contains the context switch address (bits
13-0) and an enable bit (14); when the enable bit is set,
the context switch routine is assumed to start at the
address contained in bits 13-0. The reset value of that
register is 0 for the enable bit and decimal 32 for the
context switch address.

ILLINSTADDR- Illegal Instruction Trap Address.
Bits 13-0 of this register contain the address where the
IPCM jumps when an illegal instruction is executed; it is
0x0001 at reset.

CHNOADDR- Channel 0 Address. This 13-bit
register is used by the boot code or the IPCM: after
reset, it points to the standard boot routine in ROM
(channel 0 routine); by changing that address, the user
has the ability to perform a boot sequence with his own
routine. The very first instructions of the boot code
fetch the contents of that register (it is also mapped in
the IPCM memory space) and jump to the given address.

The reset value is 0x0050 (decimal 80).

CHNENBL- Channel Enable RAM. The Host Control
module contains a 32x32 channel enable RAM. This channel
enable RAM contains the event/channel correspondence map.
Any event can trigger any possible combination of
channels according to the contents of that RAM.

CHNPRI- Channel Priority Registers. This set
of 32 registers contains the priority of every channel;
that number is comprised between 1 and 7. 0 is a
regserved value used by the IPCM hardware to detect when

no channels are pending.

DSP Programming Model

The DSP 102 has some limited, compared to the
host processor 106 (i.e. host), control over the IPCM 116

52

10

15

20

25

30

35

O ®

via several interface registers. Each register occupies
two 16-bit words to accommodate all 32 channels. All
registers operate in the same manner as there host
processor counterparts. The CEVTOVR and CDSPOVR

registers are not implemented in the DSP interface.

All addresses, such as the COPTR, are comprised
of one 32-bit word that may address any location within
the Quartz memory space (4 Gbytes).

All registers are clocked with the IPCM clock
(which means the Host must ensure the IPCM clock is
running when the DSP is supposed to access those

registers) .

Regarding read & write authorized sizes: any
read puts the 32-bit contents of the register on the bus,
regardless of the read size (i.e., byte enables are
ignored); any write updates the contents of the register
according to the required size (i.e., byte enables are
used to allow writing of the corresponding byte from the
bus to the register).

The following are the registers of the DSP used
in controlling the IPCM 116 in accordance with one

embodiment of the invention.

COPRT- Channel 0 Pointer. This register
contains the 32-bit address, in DSP memory, of the array
of channel control blocks starting with CCB for channel 0
(the control channel). The DSP has a read/write access,
the IPCM has a read-only access. On reset, this register
will be all zeros. This register should be initialized by
the DSP before any channels are enabled.

INTR- Channel Interrupts. This register
contains the 32 DI[i] bits.. If any bit is set, it will
cause an interrupt to the host. This register is a
"write-ones" register to the host. When the host sets a
bit in this register the corresponding DI[i] bit is
cleared. The interrupt service routine should clear

53

O O

individual channel bits when their interrupts are
serviced, failure to do so will cause continuous
interrupts. The IPCM is responsible for setting the DI[i]
bit corresponding to the current channel when the

5 corresponding done instruction ig executed.

STOP/STAT- Channel Stop/Channel Status. This
32-bit register has one bit for every channel. This
register is a "write-ones" register to the DSP. When the
DSP writes a 1 in bit I of this register, it clears the

10 corresponding DE[i] and START([i] bits. Reading this
register yields the current state of the DE[i] bits.

START- Channel Start. This 32-bit register has
one bit for each channel. This register is a
"write-ones" register to the DSP. Neither START[i] bit
15 can be set while the corresponding DE[i] bit is cleared.
When the DSP tries to set the START([i] bit by writing a
one, if the corresponding DE[i] bit is clear, the bit in

the START [i] register will remain cleared and the DE[i]

it

bit will be set. If the correspondent DE[i] bit was

20 already set, the START [i] bit will be set. The next
time the IPCM channel I attempts to clear the DE[i] bit
by means of a done instruction, the bit in the START [i]
register will be cleared and the DE[i] bit will take the
old value of the START[i] bit. Reading this register

25 yields the current state of the START[i] bits. That
mechanism allows the DSP to pipe-line two START commands

==
ok
N
3
ok

&%
fed

per channel.

EVTERR- Event Error Register. This register is
used by the IPCM to warn the DSP when an incoming event

30 was detected and it triggers a channel that is already

pending or being serviced. That probably means there is
an overflow of data for that channel. This is a
"write-ones" register for the scheduler. It is only able

to set the flags; the flags are cleared when the regigter
35 1is read by the DSP or during IPCM reset.

Any EVTERR([i] bit is set when an event that

54

10

15

20

25

30

35

O O

triggers channel i has been received through the event
input ping and the EP[i] bit is already set; the
EVTERR[i] bit is unaffected if the Host tries to set the
EP[i] bit whereas that EP[i] bit is already set.

This register is not the same as the Host
EVTERR. When the DSP reads and clears it, the same
information is still available in the Host register.

INTRMASK- Channel Interrupt Mask Flags. This
register contains 32 interrupt generation mask bits. If
bit INTRMASK([i] is set, the DI[i] bit is set and an
interrupt is sent to the DSP whenever an event error is
detected on channel i (i.e., EVTERR[i] is set).

PSW- Scheduler Status. This is a 16-bit
register with the following status information: [4:0]CCR
(current channel register); [7:5]CCP (current channel
priority); [12:8]NCR (next channel register); and [15:13]
NCP (nest channel priority).

EVTERRDBG- Event Error Register for Debug.
This register is the same as EVTERR except reading it
does not change its contents (i.e. it is not cleared);
that address is meant to be used in debug mode. The DSP
OnCE may check that register value without modifying it.

IPCM Programming Model

Each programmable DMA data channel has eight
general purpose registers of 32-bits for use by scripts.
General register 0 has a dedicated function for the loop
instruction, but otherwise can be used for any purpose.

Functional Unit State. Each channel context
has some state that is part of the functional units.
The specific allocation of this state is part of the
functional unit definition. This state must be
saved/restored on context switches.

Program Counter Register (PC). The PC is 14
bits. Since instructions are 16-bits in width and all
memory in the IPCM is 32-bits in width, the low order bit

55

10

15

20

25

30

35

O O

of the PC selects which half of the 32-bit word contains
the current instruction. A low order bit of zero selects
the most significant half of the word (i.e. big-endian).

Flags. Each channel has 4 flags: The T bit
reflects the status of some arithmetic and test
instructions. It is set when the result of an addition
or a subtraction is zero and cleared otherwise. It is
also the copy of the tested bitg. Finally it can alsoc be
set when the loop counter ((GReg0) reaches zero; when the
last instruction of the hardware loop is an operation
that can modify the T flag, its effect on T is discarded
and replaced by the GReg0 Status.

Two additional bits, SF and DF, are used to
indicate error conditions resulting from loading data
sources and storing to destinations, respectively. Access
errors set these bits, and successful transactions clear
them. They can also be cleared by specific instructions
(CLRF and LOOP. The SF (sgsource fault) is updated by
loads LD and LDF; the DF (destination fault) is updated
by stores ST and STF.

Access errors are caused by several conditions:
writing to the ROM, writing to read-only memory mapped
register. accessing art unmapped address or any transfer
error received by a peripheral when it is accessed.

The SF and DF flags have a major impact on the
behavior of the hardware loop: if SF or DF is set when
starting a hardware loop and it is not masked by the LOOP
instruction, the loop body will not be executed; now,
inside the loop body, if a locad or store sets the
corresponding SF or DF flag, the loop exits immediately.
Testing the status of the T flag at the end of the loop
(as well as testing both SF and DF) tells If the loop
exited abnormally as any anticipated exit prevents GregO
from reaching the zero value and thus setting the T flag.
This is also valid if the fault occurs at the last
instruction of the last loop.

56

o

10

15

20

25

30

35

O O

The last flag is the loop mode flag, LM, which
indicates when the processor is currently operating in
loop mode. It is set by the LOOP instruction and is
cleared after execution of the last instruction of the
last loop.

Return Program Counter (RPC). The RPC is 4
bits. It is set by the jump to subroutine instructions
and used by the return from subroutine instruction.
Instructions are available to transfer its contents to

and from a general register.

Loop Mode Start Program Counter (SPC). The SPC
is 14 bits. It is set by the loop instruction to the
location immediately following it.

Loop Mode End Program Counter (EPC). The EPC
is 14 bits. It is set by the loop instruction to the
location of the next instruction after the loop.

Context Switching. Each channel has a separate
context consisting of the 8 general purpose.registers and
additional context representing the state of the
functional units. The active registers and functional
units contain the context of the active channel. The
context of in inactive channels are stored in IPCM RAM
which is part or the IPCM address space. A context
switch stores the active registers into the context area
of the old channel and loads the new context from the
context area of the new channel. It exactly requires 47
IPCM cycles to complete.

It is possible to define a custom context
switch routine. The user has to store it wherever
possible in RAM and its start address must be written in
the CSWADDR control register via the MCORE. With that
option it is not possible to achieve a similar cycle
count as the built-in routine (i.e., 47 cycles) as all
loads and stores will require 2 cycles to complete
instead of 1 cycle in the ROM routine (1 cycle to perform
the load/store plus 1 cycle to fetch the next

57

O O

instruction: both accesses use the RAM, which means they
cannot be done in parallel).

Memory Mapped Registers. The IPCM core has

access to several registers through the system bus.

5 Host Channel 0 Pointer (MCOPTR). Contains the
address, in the MCU memory space, of the initial IPCM
context and scripts, that are loaded by the IPCM boot
script which is running on channel 0. This is a read-only

register.

10 DSP Channel 0 Pointer (DCOPTR). Contains the
address, in the DSP memory space, of the initial IPCM
context and scripts, that are loaded by the IPCM boot

script which is running on channel 0. It is unused for
now. This is a read-only register.
15 Current Channel Register (CCR). Contains the

5-bit priority of the channel whose context is installed.

This is a read-only register.

Current Channel Priority (CCPR). Contains the
3-bit priority of the channel whose context is installed.

20 This is a read-only register.

Highest Pending Channel Register (HPCR).
Contains the decoded 32-bit number of the channel the
task scheduler has selected to run next. A bit is set to
T1" at position or channel selected (e.g., if HPCR
25 contains value 0x04000000, channel 26 is the next channel

selected by the scheduler). This is a read-only register.

Highest Pending Priority (HDPR). Contains the
3-bit priority of the channel the scheduler has selected

to run next. This is a read-only register.

30 Current Channel Pointer (CCPTR). Contains the
start address of the context data for the current
channel: its value is CONTEXT BASE + 20*CCR (CONTEXT BASE
= 0x0800); this is a read-only register.

CHNOADDR. Contains the address of the channel

58

10

15

20

25

30

35

O O

0 routine programmed by the MCORE; it is loaded into a
General register at the very start of the boot and the
IPCM jumps to the address it contains. By default, it
points to the standard boot routine in ROM.

Address Space. The IPCM has two internal
busses: the Instruction bus used to read instructions
from the memory; and the data bus used to access the same
memories as those visible on the instruction bus, plus
some memory mapped registers (scheduler status and OnCE
registers) and 5 peripheral registers (USB, UART1, UART3,
MMC & Video SAP).

Instruction Memory Map. It is based on a
14-bit address bus and a 16-bit data (instruction) bus;
instructions are fetched from either program ROM or
program RAM. An IPCM script is able to change the
contents of the program RAM that is also visible from the
data bus.

The first two instruction locations (at 0 and

1) are special. Location 0 is where the PC is set on
reset. Location 1 is where the PC is set upon the
execution of an illegal instruction. It is expected that

both of these locations will contain a jmp to handler
routines.

Data Memory Map. All of the data accessgible to
IPCM scripts make tip the data memory space or the IPCM.
This address space has several components: ROM, RAM,
peripheral registers, and scheduler registers (CCR, HPCR
and CCPTR) and OnCE registers. IPCM scripts can read and
write to the context RAM, data RAM and peripheral

registers.

The address range is 16 bits and the data width
os 32 bits; however, when accessing peripheral registers
(USB, etc.), the data width may be different; in that
case, during a write, the unused part of the 32-bit data
to write is ignored by the peripheral; during a read, the
missing part of the 32-bit read data is replaced by ~0's.

59

10

15

20

25

30

35

O O

IPCM Initialization

After hardware reset, the IPCM 116, the program
RAM, context RAM, and data RAM have unpredictable
contents. The active register set is assigned to channel
0 and the PC is initialized to all zeros. However, since
the channel enable register is all zeros, there are no
active channels and the IPCM is halted.

To start up the IPCM, the host processor 106
(i.e. host) first creates some channel control blocks in
host memory for the control channel (channel 0) and then
initializes the channel 0 pointer register to the address
of the first control block. It then sets bit 0
(corresponding to channel 0) in the channel enable
register.

Upon being enabled, the IPCM 116 then begins
executing the script located at address 0 in the program
ROM for channel 0. This ROM 308 script will read the
channel 0 pointer register and, using the address
contained therein, begin fetching (using DMA) the first
channel control block. If the block contains a valid
command, it interprets the command (which will normally
be to download something from host to IPCM memory) and
proceeds to implement the command and move on to the next
control block. This continues until an invalid channel
command is reached, at which time the script will halt,
awaiting the host to re-enable the channel again.

There are also two means to make the IPCM boot
on a user-defined script. First, by using the OnCE
(either via its Jtag interface of its MCORE interface) to
download any code in the IPCM RAM and force the IPCM to
boot on that code; second, by using the CHNOADDR register
in the Host programming model; the IPCM boot code fetches
the contents of that register and jumps to the given
address.

The execution of an IPCM script depends on both
the instructions that make up the script and the data

60

10

15

20

25

30

35

O O

context upon which it operates. Both must be initialized
before the script is allowed to execute. Each of the 32
channels has a separate data context, but may share

scripts and locations in data RAM.

The host manages the sgpace in program RAM and
data RAM. It also manages the assignment of IPCM
channels to the device drivers that need them. Channels
are initialized by the host by using channel 0 to
download any required scripts and data values and the
channels initial context. The context contains all the
initial values of the registers, including the PC. Then
the host 106 enables the channel and the channel becomes
active and begins fetching and executing instructions

from its script.

Refer to attached Appendix A entitled
INSTRUCTION SET FOR RISC PROCESSOR CORE OF IPCM, which
describes a complete set of preferred instructions for
use in the IPCM 116 in accordance with one embodiment of
the present invention.

The following further describes the DSP DMA
unit and the host processor DMA unit corresponding to the
embodiment employing the instruction set of Appendix A.

functional units.

The functional unit instructions cause an 8-bit
code, found in the low 8-bits of the instruction, to be
asserted on the functional unit control bus. Some of
these bits are used to select one of several functional
units. In order to establish a programming convention,
we will assume the selection bits are some number of the
most significant bits of the 8-bit code. Furthermore,
some number or the least significant bits will be decoded
by a given functional unit to establish the type of

operation to perform.

For the host DMA unit 312, the DMA instructions
control the DMA state machine and may cause a DMA cycle

on the associated memory bus. There are three registers

61

e 0

fit

M

I
H

D I

i
&

r

10

15

20

25

30

35

O O

associated with the host DMA unit, an address register
(MA) , a data buffer (MD) and a state machine register-
(MS) .

The address register (MA) contains the pointer
into DMA memory associated with the next data transfer.
It has byte granularity. Reading the register with the
1df instruction (i.e. read) has no side effects. Writing
the address register may have side effects. If there is
value write data in the buffer, and the address is
changed, the write data will be flushed (i.e., a DMA
write cycle will be issued). If the prefetch bit is set
and if there are no valid write data, a DMA read cycle

will be issued with the new address.

As data is transferred to or from the data
buffer, the address register is incremented by the
number of bytes transferred/ Of the address increments
across a 32-bit word boundary any valid write data in the
buffer will be flushed.

In the data buffer register (MD), a DMA cycle
is not always associated with a stf instruction which
loads the write buffer, the instruction may just load a
subunit of transfer into the buffer register as it
accumulates bytes which will be later used in full size
memory transfers. The DMA unit keeps state as to which
bytes are valid and does the correct shifting and
insertion of new data. The instruction that loads the
write buffer can conditionally cause the resulting buffer
to be flushed, causing a DMA write cycle, even if the
buffer is not entirely filled.

A 1df instruction that reads the data buffer,
may cause a DMA cycle if the data has not already been
fetched. Each read transfer can conditionally cause a
prefetch, if all the bytes in the buffer have been
transferred.

Writes and reads of the data buffer may cause

destination or source faults, respectively. As the MLB

62

s

CUIETEy

10

15

20

25

30

35

O O

does not support 24-bit accesses, the Host DMA triggers
an error when a 3-byte access is requested on the MLB.
That only no occurs when a flush or a fetch is requested;
the internal MD register can have a 3-byte data at any
moment as far as no external access is performed. The
eDRAM supports 3-byte accesses.

There is the special case of the flush: using
byte accesses to MD, it is possible to have 3 active
bytes and request a flush; the 3 active bytes in MD will
be correctly written to the eDRAM; but the access will
cause an error if the write is done on the MLB.

The state register (MS) contains the DMA
state-machine value. It is not meant to be accessed by
the user in normal mode. In fact, as context switches
may occur while the DMA is in any state, it is necessary
to save that state, which is done by the context switch

routine.

The Prefetch and Flush management allows the
IPCM RISC machine to go on while a DMA access is
performed. When the RISC Core requires a prefetch (p=1)
or an auteo-flush (£f=0) to the Host DMA, it will receive
an immediate transfer acknowledge before the DMA has
finished the external access; which allows the RISC Core
to do other things like accessing another DMA machine.

However, the user must be aware of the inherent
limits of that mechanism: as far as the DMA has not a
FIFO stack to store commands, if a prefetch/auto-flash
command is issued, whereas the DMA has not finished its
previous access, the transfer acknowledge will be delayed
until the preceding access is over.

Another point is the management of errors: as
the DMA immediately sends an acknowledge to the RISC
Core, it assumes no error will occur (except if it detect
the access is forbidden like a 24-bit access to the MLB).
If an error occurs, it will be flagged (transfer error
acknowledge) for the following DMA access.

63

Y

10

15

20

25

30

35

O O

That should not be a problem if the DMA is used
properly. The prefetch/auto-flush feature is meant to be
used in hardware loops and a last access with no prefetch
(p=0) or a forced flush (f=1) should be performed after
the hardware loop: that access will gather any remaining
error (its own as well as an error from the previous
prefetch or auto-flush access).

The DSP DMA Unit 310 is functionally identical
to the host DMA unit 312 with minor restrictions. It
allows 32-bit and 16-bit transfers to the Quartz DMA.

The DMA instructions control the DMA state
machine and may cause a DMA cycle on the associated
memory bus. There are three registers associated with
the host DMA unit, an address register (DA), a data
buffer (DD) and a state machine register (DS).

The address register (DA) contains the pointer
into DMA memory associated 'with the next data transfer.
It has byte granularity. Reading the register with the
1df instruction has no side effects. Writing the address
register may have side effects. If there is valid write
data in the buffer, and the address is changed, the write
data will be flushed (i.e., a DMA write cycle will be
issued). If the prefetch bit is set and if there are no
valid write data, a DMA read cycle will be issued with
the new address.

As data is transferred to or from the data
buffer, the address register is incremented by the number
of bytes transferred. If the address increments across a
32-bit word boundary any valid write data in the buffer
will be flushed.

In the data buffer register (DD), a DMA cycle
is not always associated with a DMA write instruction
which loads the write buffer. The instruction may just
load a subunit of transfer into the buffer register as it
accumulates bytes which will be later used in full size
memory transfers. The DMA status keeps state as to which

64

10

15

20

25

30

35

O O

bytés are valid and does the correct shifting and
insertion of new data. The instruction that loads the
write buffer can conditionally cause the resulting buffer
to be flushed, causing a DMA write cycle, even if the
buffer is not entirely filled.

A DMA read instruction that reads the data
buffer, may cause a DMA cycle if the data has not already
been fetched. Each read transfer can conditionally cause
a prefetch, if all the bytes in the buffer have been

transferred.

Writes and reads of the data buffer may cause
destination or source faults, respectively. As the
Quartz DMA does not support byte accesses, the DSP DMA
detects any unauthorized access size and triggers an
error accordingly. Unauthorized sizes are 1 byte and 3
bytes. That only occurs when a flush or a fetch is
requested. The internal DD register can have a I-byte or
a 3-byte data at any moment as far as no external access
is performed.

The state register (DS) consists of 00110000
32-bit read with no side effect.

The Prefetch and Flush management allows the
IPCM RISC processor to go on while a DMA access is

performed. When the RISC Core requires a prefetch (p=1)

or an automatic flush (f= 0) to the Host DMA, it will
receive an immediate transfer acknowledge before the DMA
has finished the external access; which allows the RISC
Core to do other things like accessing another DMA
machine.

However, the user must be aware of the inherent
limits of that mechanism: as far as the DMA has not a
FIFO stack to store commands, if a prefetch/auto-flush
command is issued whereas the DMA has not finished its
previous access, the transfer acknowledge will be delayed

until the preceding access is over.

65

I

10

15

20

25

30

35

O O

Another point is the management of errors: as
the DMA immediately sends an acknowledge to the RISC
Core, it agssumes no error will occur (except if it
detects the access is forbidden like a 24-bit access to
the MLB). If an error occur, it will be flagged
(transfer error acknowledge) for the following DMA

access.

That should not be a problem if the DMA is used
properly: the prefetch/auto-flush feature is meant to be
used in hardware loops and a last access with no prefetch
(p=0) or forced flush (f=1) should be performed after the
hardware loop: that access will gather any remaining
error (its own as well as an error from the previous

prefetch or auto-flush access).

Programming Conventions

Much of the programming model as seen by the
host or DSP is not mandated by the hardware architecture
of the IPCM, but rather by the scripts that run on the
IPCM. Some of these scripts will be in ROM so the
conventions they impose are not eas}ly changeable.

On the host processor side, There are 32
channel control blocks (CCBs) in a array whose base
address is specified in the COPTR. Each control block
consists of four 32-bit words. The first word will
contain status which is currently undefined. The second
word contains a pointer to the base of an array of buffer
descriptors (Bds). The third word contains a pointer to
the current BD. The fourth word is currently unused.

The contents of a channel control block may
only be changed by the host when the channel is not

running.

The host buffer descriptors (refer to FIG. 6)
form an array of programmable size, the last buffer
descriptor is marked as such. The array of buffer
descriptors is treated as a ring, with some logically

66

10

15

20

25

30

35

O O

contiguous portion owned by the host, and the remainder
by the IPCM. A status bit indicates the ownership of
each buffer descriptor.

When a buffer descriptor changes ownership from
the host to the IPCM, the count field indicates how much
data is to be transmitted or the size of the receive
buffer. When ownership reverts back to the host, the
count indicates how much data was transmitted or
received.

Channel 0 Commands. The COMMAND field of a
buffer descriptor contains an 8-bit command code used to
communicate between the host and the IPCM. Currently the
channel 0 script recognizes only the following commands:
(1) Set the IPCM address to be used in subsequent
commands to the value contained in the buffer address
field; (2) Copy from the host memory at buffer address to
the IPCM memory; (3) Copy to the host memory at buffer
address from the IPCM memory; (4) Copy from the host
memory to the channel context of the channel number in
the high 5 bits; and (5) Copy to the host memory from the
channel context of the channel number in the high 5 bits.

On the DSP side, there are 32 channel control
blocks (CCBs) in a array whose base address is specified
in the COPTR. The CCB for channel 0 is not used. Each
channel control block consists of eight 16-bit words/
The first two words will contain status which is
currently undefined. The second two words contain a
pointer to the base of an array of buffer descriptors
(Bds). The third two words contain a pdinter to the

current BD. The fourth two words are currently unused.

DYNAMTC MEMORY REFRESH METHODS

Referring briefly back to FIG. 2, the processor
platform is illustrated including the refresh controller

responsible for refreshing the dynamic random access

67

HER
5
e

10

15

20

25

30

35

O O

memory, i.e. eDRAM. The refresh controller 220 is
coupled to the eDRAM 108 via the r bus 240 through the
data path select 218, which acts to multiplex access to
the eDRAM from other competing devices, such as the IPCM
116, the host processor 106, and the LCD controller 204.

As is known in the art, dynamic memory (DRAM or
eDRAM) is required to be provided DC power and refreshed
periodically so that the data stored in the memory is
retained. In contrast, static memory (e.g. SRAM) does
not need to be refreshed as long as a constant power
supply is coupled thereto. The refresh controller 220 of
one embodiment of the processor platform 100 is designed
to conserve as much power as possible, which for handheld
applications is advantageous in extending battery life.

The refresh controller 220 has two basic modes
of operation: an active mode and a data retention mode.
The active mode is invoked during normal operation of the
eDRAM 108. The active mode is used anytime the product
incorporating the processor platform 100 is operated by
the end-user. The active mode uses a "cycle stealing"
distributed refresh method as known in the art of
discrete DRAM implementations.

Data retention mode is invoked when the product
incorporating the processor platform 100 is not
operational and it is desired to retain the contents of
the eDRAM 108. This data retention mode has three
operating modes: (1) distributed refresh method, (2) a
"selective refresh" method and (3) a "temperature
compensated” refresh method.

The distributed refresh method as known in the
art is identical to the active mode of operation in that
the memory is refreshed periodically, whereas the
selective refresh and the temperature compensated refresh
may be used individually or together in order to reduce
the amount of power required to retain data in the eDRAM

memory array or may be used together to achieve a further

68

O O

overall reduction in the power consumed to retain data,
which results in a longer battery life in which is

particularly important to handheld applications.

Even though the active mode and distributed

5 refresh technique are well known in the art, the refresh
controller 220 advantageously uses a low frequency clock
source from a time of day module operating at 32 kHz,
although in other embodiments any clock known in the art
may be used. Thus, in preferred embodiments, the clock

10 input 252 to the refresh controller 220 is the time of
day clock required for use in the product incorporating
the processor platform 100. This 32 kHz clock input 252
is multiplied (x2) within the refresh controller 220 and
used to activate the refresh cycle. As is known in the

15 art, a counter is provided within the refresh controller

220 having 'n' number of states where 'n' is equal to the
total number of rows in the array. The counter is

incremented modulo 'n' with each clock transition.

i

"Sense amplifiers", as . known in the art, perform the

20 actual refresh of the selected bit cells within the rows.

.g i

| 1

i

Advantageously, the refresh controller 220 uses
the already provided time of day clock as the clock
input; thus, eliminating the need for a separate
dedicated clock to run the refresh controller 220 as is

25 done conventionally. Employing a separate dedicated
clock for the refresh controller 220 further adds to the
power consumed by the system when the power is off.

Referring next to FIG. 7, The selective

refresh method advantageously reduces the numbers of rows

30 in the memory (e.g. eDRAM 108) to be refreshed in order
to reduce power consumption at the expense of reducing
the number of memory cells that will be retained. For
example, if the memory (i.e. DRAM) is divisible into
multiple portions, one or more of the multiple portions

35 of the memory may be refreshed without refreshing all of
the multiple portions. Specifically, the multiple

69

10

15

20

25

30

35

O O

portions may be rows of memory in an array. Thus, the
contents of the rows of the memory being refreshed will
be saved, while the contents of the data held in memory
rows not being refreshed will be lost. For example,
while the device is being shut down by the user (e.g.
turned off), the host processor 106 makes a determination
of which rows within the memory, e.g. eDRAM 108, need to
be saved and which portions (e.g. rows) do not need to be
saved (Step 702). Next, the host processor 106 sends a
control signal to the refresh controller 220 instructing
which rows or portions of the host processor memory is
desired to be saved (Step 704). The refresh controller
220 is configured to refresh only the identified rows or
portions within memory for the duration of time that the
power is off. Then, the refresh controller 220 accesses
the host processor memory (e.g. eDRAM 108 through the
data path select 218) and refreshes the configured rows
(Step 706). Thus, less power is consumed in the refresh
of the memory since only part of the memory is being
refreshed, instead of the entire memory being refreshed.
In this embodiment, this provides quite a savings in
power'since the eDRAM 108 is large and typically less
than the entire eDRAM 108 needs to be saved.

The selective refresh method implemented by the
refresh controller 220 is described as follows. Given
that there are n rows within the memory array, e.g. eDRAM
108, define j as the total number of rows in the memory
array to be refreshed such that j is a number between 0
and n. The algorithm then becomes:

1=0
Refresh Row;

i=i+1 modulo j.

In other words, the refresh controller 220
modulo "n' counter is reduced to a modulo (n-a) counter
where “a' is the number of rows to be omitted from the

refresh activity.

70

10

15

20

25

30

35

O O

Referring next to FIG. 8, a flowchart 800 is
shown of the steps of the refresh Controller 220 of FIG.
2 in performing the temperature compensated method of
memory refresh. The temperature compensated method of
memory refresh adjusts the periodicity of the refresh
activity based on ambient temperature of the product. At
room temperature and below, this can save a considerable
amount of power, which is important to increasing battery
life in battery operated handheld devices.

Generally, the higher the temperature, the more
often a given memory, e.g. eDRAM, is required to be
refreshed. Prior art approaches design the refresh rate
of a refreshing unit around "worst case" scenarios in
which the product incorporating the DRAM would be at an
unusually high default temperature. As such, for most of
the time, the memory is actually "over-refreshed".
However, in sgize and power conscious applications, such
as for use in the processor platform 100 used as a
multimedia wireless handheld device where power
consumption is desired to be minimized, such "over-
refreshing" may lead to a waste of power in operating the
refresh controller more than necessary.

Thus, in contrast to conventional refresh
controllers, the default temperature assumed for the
refresh controller 220 is very low, such that the default
refresh rate is less (i.e. the time in between refreshes
is longer), often resulting in a savings of power.
However, the temperature of the product may be at this
low temperature or below, but at other times the ambient
temperature of the product will be above this low refresh
rate temperature. Unless the refresh rate is compensated
for higher temperatures, the data retained in the DRAM
will be lost in between refresh cycles. Thus, the
temperature compensated method of refreshing measures the
ambient temperature of the product in order to determine
if the refresh rate needs to be increased or if it can
remain at a slower refresh cycle in order to save power.

71

=

iy

10

15

20

25

30

35

O O

When the ambient temperature of the product is high, the
time between refresh cycles is decreased.

Specifically, the temperature compensated
refresh method is described below. First, given a
digital timer circuit that is clocked with an accuracy of
+/-100ppm and having a resolution of at least .1 second.
The timer shall be capable of measuring time using a
suitable clock signal and signaling an "event" after a
pre-programmed time has elapsed. The timer shall have a
register which is set to an integer value and is used to
represent a pre-programmed value elapsed time to be
measured. Also given an electronic digital thermometer
circuit providing an indication range of x to y degrees
with an accuracy of +/"j" degrees and further given a
translation table consisting of a non-volatile memory
array (e.g. a pre-programmed ROM) of "n" elements with
each element containing an integer number herein referred
to as "count". The bounds of the array (i.e. number of
elements) are determined by the following equation: n=y-
X, where n is the number of array elements and x and y
upper and lower temperature range limits.

The absolute value and range of "count" must be
compatible with the absolute value and range of the
"count" register that is supported in the digital timer.
Each "count" entry is assigned to occupy one element
within the array. The entries of "count" are ordered in
the array in a linear ascending manner such that the
first element in the array corresponds to the lowest
measured temperature (i.e. x) and the last element in the
array corresponds to the highest measured temperature
(i.e. y).

The value assigned to each count entry is made
from empirical data taken from actual samples of the
actual DRAM memory device intended to be used. As an
alternative, the values for "count" may be determined
through computer simulation methods of the leakage
characteristics of the transistors used in the memory

72

10

15

20

25

30

35

O O

array as a function of changes in ambient temperature.

In either case, the value of "count" is to represent the
minimum refresh rate necessary to maintain data integrity
at a specific temperature within the range of x to y
degrees. Each element in the array is to represent an
incremental change in ambient temperature staring at
temperature x and incrementing to temperature y. The
contents of each element is to represent the minimum
necessary refresh rate to maintain data integrity.
Additional tolerance must be given to accommodate digital
temperature accuracy "j" as well as memory operating
voltage tolerance and expected unit to unit variation.

It is expected that while the elements of the array are
ordered in linear fashion with respect to temperature,
the values of "count" may represent an exponential
characteristics.

The temperature compensated refresh method
operating procedure begins by refreshing all rows in the
memory array (Step 802). Note that rows to be refreshed
may be governed by "selective refresh method" described
above with reference to FIG. 7, such that Step 802 may be
refreshing less than all of the rows (portions) of memory
in the memory array. Next, an ambient temperature is
measured (Step 804) using digital thermometer. Next, the
ambient temperature measurement is translated to a count
value using a look-up table (Step 806). The lookup table
represents various refresh rates at different
temperatures determined through simulation and empirical
data. If the measured temperature is out of bounds for
the lookup table then the first element, in the case
exceeding the lower boundary "x", or the last element, in
the case of exceeding the higher boundary "y", should be
chosen. The count value is applied to the digital timer
circuit (Step 808). Once the timer "event" has expired,
i.e. the digital timer circuit expires (Step 810),
refresh all rows; thus, repeating Steps 802 through 810.
All steps are repeated indefinitely until the product is

73

10

15

20

25

30

35

turned on (Step 812); thus, active refresh mode is re-
entered (Step 814).

Thus, by employing the temperature compensated
refresh method of memory refresh, power is conserved,
especially at or below room temperature operating
environments, in comparison to a standard refresh
operation, e.g. the distributed refresh method.

The "temperature compensated mode" together
with the "selective refresh mode" can advantageously be
operated simultaneously in order to consume the lowest
possible data retention power. The operating modes of
the refresh controller are configured by the host
processor via signaling overt the h bus 232 prior to
product shut down. The refresh controller 220
automatically reverts to the "Normal" refresh mode of
operation (e.g. distributed refresh) when the host
processor 106 re-enters the active state, i.e. the power
is turned on. The transition between data retention and
normal operation (active mode) is performed seamlessly
without requiring any intervention from the host
processor 106.

Referring next to FIG. 9, a block diagram is
shown of a memory refresh system 900 using the selective
refresh technique and the temperature compensated refresh
techniques of FIGS. 7 and 8. Shown is a time of day
clock 902, binary counters 904 and 906, comparators 3508
and 910, partial refresh register 912, host processor 914
(host MCU 914), count register 916, memory array 918,
digital temperature measurement 920, temperature sensor
922, refresh enable flip flop 924, clear signal 926, set
signal 928, refresh enable signal 930 and refresh row
enable 932.

Consistent with the descriptions associated
with FIGS. 7 and 8, a digital temperature sensor 922
measures an ambient temperature. This temperature
measurement 920 is sent to memory array 918 and

translated into a count value according to a look up

74

)
o

Ee
]

10

15

20

25

30

35

O O

table stored in the memory array, as described above with
reference to FIG. 8. The count value corresponds to a
time measurement in between refresh cycles for various
operating temperatures. The count value is copied into a
count register 916. This count value is then compared to
the value of binary counter 906 by comparator 910 coupled
therebetween. Binary counter 906 is coupled to the time
of day clock 902 such that it counts according to real
time.

When the value in binary counter 3806 equals the
count value in the count register 916, the comparator 910
outputs a set signal 928 to set the refresh enable flip-
flop 924 to activate a refresh cycle, i.e. the refresh
enable flip-flop 924 outputs a refresh enable signal 930
(e.g. refresh enable signal 930 goes high or "1"). At
this point, after an amount of time determined according
to the temperature the memory is refreshed. The set
signal 928 is also output back to binary counter 906
(resetting it back to zero or another reference starting
point) and to the digital temperature measurement 920,
which is re-loaded into the memory array 918 in order to
determine the next variable amount of the time for the
next refresh cycle. If the temperature remains the same,
the time in between refresh cycles remains the same. As
the temperature changes, the time in between refresh
cycles will change. For example, if the temperature
drops, then the time in between refresh cycles is
lengthened, advantageously conserving power since, the
refresh cycle is less often.

Additionally, the host processor is coupled to
a partial refresh register 912 such that the host
processor 914 loads a value into the partial refresh
register 912 indicating what portion of the system memory
to refresh, e.g. which rows to refresh and which rows not
to refresh. The value is the partial refresh register
912 is then compared to the value of binary counter 904
by comparator 908 coupled therebetween. Binary counter

75

10

15

20

25

30

35

O O

904 is also coupled to the time of day clock 902, but
does begin to start counting until comparator 910 outputs
the set signal 928 which is also coupled to binary
counter 904. Thus, once the refresh cycle (refresh
enable signal is output) is activated by the set signal
928 into the refresh enable flip-flop 924, then the
binary counter 904 beginsg to count.

Once the value in binary counter 904 equals the
value in the partial refresh register 912, the comparator
outputs a clear signal 926 to the refresh enable flip-
flip 924 and back to the binary counter 904. The clear
signal resets binary counter 904 and causes the refresh
enable flip-flop to disable the refresh enable signal 930
(e.g. the refresh enable signal 930 goes low or "0").
This effectively stops the refresh process such that less
than the entire portion of the memory is refreshed (as
determined by the host processor prior to power off)
which advantageously conserves power. Note that in this
embodiment, the binary counter also counts a number
corresponding to the refresh row address in memory
(DRAM), i.e. refresh row address signal 932.

The memory refresh system shown in FIG. 9
advantageously uses both the selective refresh technique
and the temperature compensated refresh technique to
synergistically reduce power consumption during the
refreshing of DRAM. The components used are well known
in the art. Most of the components may be a part of the
refresh controller 220 of FIG. 2 depending on the
embodiment. For example, in one embodiment, the
temperature sensor 922, temperature measurement 920 and
memory array 918 are located on a separate chip, while
the host processor is located on the same processor
platform. The partial refresh register 912, comparators
908 and 910, binary counters 904 and 906, count register
916, and the refresh enable flip-flop 924 are all part of
the refresh controller 220.

While the invention herein disclosed has been

76

described by means of specific embodiments and
applications thereof, numerous modifications and
variations could be made thereto by those skilled in the

art without departing from the scope of the invention set
5 forth in the claims.

155
=
=t
==
=

I

f

77

	2000-06-09 Specification

